def delay_20(agi): util.metric(agi, 'delay-20') agi.appexec('wait', 5) util.say(agi, 'please-hold') agi.appexec('wait', 1) util.say(agi, 'for-the-next-available-outgoing-line') agi.appexec('wait', 3) agi.appexec('MusicOnHold', ',6') agi.appexec('wait', 1)
def yt_scan(bot, url): if bot.config.get("module: open_graph", "youtube") == "off": return None url = re.sub("http(s)?://", "", url) regex = "^(?:www\\.)?(?:(?:youtube\\.com/(?:watch)?(?:[?&][a-z]+=[a-z_]+)?(?:[?&]v=))|(?:youtu\\.be\\/))([a-zA-Z0-9-_]+)" apiurl = "http://gdata.youtube.com/feeds/api/videos/%s?v=2&alt=jsonc" % re.findall(regex, url)[0] bot._debug("API URL: %s" % apiurl) result = urllib2.urlopen(apiurl) jsondata = json.load(result) title = jsondata['data']['title'] author = jsondata['data']['uploader'] length = util.time_metric(secs=jsondata['data']['duration']) likes = util.metric(int(jsondata['data']['likeCount'])) dislikes = util.metric(int(jsondata['data']['ratingCount']) - int(jsondata['data']['likeCount'])) views = util.metric(int(jsondata['data']['viewCount'])) fmt = "\x02You\x034Tube\x0f: \x02%s\x0f by %s [%s] [\x033+%s\x0f \x035-%s\x0f] [%sv]" % (title, author, length, likes, dislikes, views) util.answer(bot, fmt.encode('utf-8'))
def train(train_loader): epoch_loss = [] train_pred = [] train_label = [] for i, (x, y) in enumerate(train_loader, 0): x = x.cuda() y = y.cuda() optimizer.zero_grad() normalization_label = y[:, :, :, 0].cpu().detach().numpy() # STGCN # out = net(A_wave, x) out = net(x) pred = util.re_normalization(out, mean[0], std[0]) label = util.re_normalization(normalization_label, mean[0], std[0]) loss = criterion(out, y[:, :, :, 0]) loss.backward() optimizer.step() epoch_loss.append(loss.detach().cpu().numpy()) train_pred.append(pred.cpu().detach().numpy()) train_label.append(label) if (i + 1) % 20 == 0: pred = np.concatenate(train_pred, axis=0) label = np.concatenate(train_label, axis=0) train_mae, train_rmse, train_mape, b = util.metric(pred, label) print("[epoch %d][%d/%d] loss: %.4f mae: %.4f rmse: %.4f " % (epoch, i + 1, len(train_loader), loss.item(), train_mae, train_rmse)) train_mae, train_rmse, train_mape, b = util.metric(train_pred, train_label) return train_rmse, sum(epoch_loss)
def eval(model, data_eval, voc_size, epoch): eval_len = len(data_eval) # evaluate print('') model.eval() y_pred_prob = np.zeros((eval_len, voc_size[-1])) y_gt = y_pred_prob.copy() y_pred = y_pred_prob.copy() for step, input in enumerate(data_eval): pre_outputs, pre_labels, last_outputs, last_labels = model(input) last_outputs = F.softmax(last_outputs, dim=-1) last_v, last_arg = torch.max(last_outputs, dim=-1) last_v = last_v.detach().cpu().numpy() last_arg = last_arg.detach().cpu().numpy() def filter_other_token(x): if x[1] >= voc_size[-1]: return False return True try: last_v, last_arg = zip( *filter(filter_other_token, zip(last_v, last_arg))) except Exception: last_v, last_arg = [], [] last_v, last_arg = list(last_v), list(last_arg) target = last_labels.detach().cpu().numpy()[:-1] # remove end token pred_prob = np.zeros(voc_size[-1]) pred_prob[last_arg] = last_v pred = pred_prob.copy() pred[last_arg] = 1 y_pred[step, :] = pred y_pred_prob[step, :] = pred_prob y_gt[step, target] = 1 llprint('\rEval--Epoch: %d, Step: %d/%d' % (epoch, step, len(data_eval))) js, auc, p_1, p_3, p_5, f1, auprc = metric(y_gt, y_pred, y_pred_prob) llprint( '\tJS: %.4f, AUC: %.4f, P1: %.4f, P3: %.4f, P5: %.4f, F1: %.4f, AUPRC: %.4F\n' % (js, auc, p_1, p_3, p_5, f1, auprc))
def vmauthenticate(agi): """Authenticate a voice mailbox and continue, or busy.""" util.metric(agi, 'friction-vmauthenticate') # Note vmauthenticate lets user jump to 'a' extension if existing, # so don't call this in a context that defines that! try: util.say(agi, 'authenticate-with-your-voice-mail-box-to-continue') res = agi.appexec('VMAuthenticate') except Exception as exc: # we expect AGIAppError('Error executing application, or hangup',) util.metric(agi, 'friction-vmauthenticate-deny') agi.appexec('busy') # above command should not exit else: util.metric(agi, 'friction-vmauthenticate-allow')
def delay_10(agi): util.metric(agi, 'delay-10') agi.appexec('wait', 5) agi.appexec('MusicOnHold', ',5')
def context_restricted_dialtone(agi): util.metric(agi, 'friction-context-restricted-dialtone') agi.set_context('restricted-outgoing-dialtone-wrapper') agi.set_extension('s') agi.set_priority(1)
def main(): device = torch.device(args.device) _, _, adj_mx = util.load_adj(args.adjdata, args.adjtype) supports = [torch.tensor(i).to(device) for i in adj_mx] if args.randomadj: adjinit = None else: adjinit = supports[0] if args.aptonly: supports = None model = gwnet(device, args.num_nodes, args.dropout, supports=supports, gcn_bool=args.gcn_bool, addaptadj=args.addaptadj, aptinit=adjinit) model.to(device) model.load_state_dict(torch.load(args.checkpoint)) model.eval() print('model load successfully') dataloader = util.load_dataset(args.data, args.batch_size, args.batch_size, args.batch_size) scaler = dataloader['scaler'] outputs = [] realy = torch.Tensor(dataloader['y_test']).to(device) realy = realy.transpose(1, 3)[:, 0, :, :] for iter, (x, y) in enumerate(dataloader['test_loader'].get_iterator()): testx = torch.Tensor(x).to(device) testx = testx.transpose(1, 3) with torch.no_grad(): preds = model(testx).transpose(1, 3) outputs.append(preds.squeeze()) yhat = torch.cat(outputs, dim=0) yhat = yhat[:realy.size(0), ...] amae = [] amape = [] armse = [] for i in range(12): pred = scaler.inverse_transform(yhat[:, :, i]) real = scaler.inverse_transform(realy[:, :, i]) metrics = util.metric(pred, real) log = 'Evaluate best model on test data for horizon {:d}, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}' print(log.format(i + 1, metrics[0], metrics[1], metrics[2])) amae.append(metrics[0]) amape.append(metrics[1]) armse.append(metrics[2]) log = 'On average over 12 horizons, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}' print(log.format(np.mean(amae), np.mean(amape), np.mean(armse))) if args.plotheatmap == "True": adp = F.softmax(F.relu(torch.mm(model.nodevec1, model.nodevec2)), dim=1) device = torch.device('cpu') adp.to(device) adp = adp.cpu().detach().numpy() adp = adp * (1 / np.max(adp)) df = pd.DataFrame(adp) sns.heatmap(df, cmap="RdYlBu") plt.savefig("./emb" + '.pdf') y12 = np.array(scaler.inverse_transform(realy[:, 99, 11])) yhat12 = np.array(scaler.inverse_transform(yhat[:, 99, 11])) y3 = np.array(scaler.inverse_transform(realy[:, 99, 2])) yhat3 = np.array(scaler.inverse_transform(yhat[:, 99, 2])) df2 = pd.DataFrame({ 'real12': y12, 'pred12': yhat12, 'real3': y3, 'pred3': yhat3 }) df2.to_csv('./wave.csv', index=False)
def main(): #set seed #torch.manual_seed(args.seed) #np.random.seed(args.seed) #load data device = torch.device(args.device) sensor_ids, sensor_id_to_ind, adj_mx = util.load_adj(args.adjdata,args.adjtype) dataloader = util.load_dataset(args.data, args.batch_size, args.batch_size, args.batch_size) scaler = dataloader['scaler'] supports = [torch.tensor(i).to(device) for i in adj_mx] print(args) if args.randomadj: adjinit = None else: adjinit = supports[0] if args.aptonly: supports = None engine = trainer(scaler, args.in_dim, args.seq_length, args.num_nodes, args.nhid, args.dropout, args.learning_rate, args.weight_decay, device, supports, args.gcn_bool, args.addaptadj, adjinit) print("start training...",flush=True) his_loss =[] val_time = [] train_time = [] for i in range(1,args.epochs+1): #if i % 10 == 0: #lr = max(0.000002,args.learning_rate * (0.1 ** (i // 10))) #for g in engine.optimizer.param_groups: #g['lr'] = lr train_loss = [] train_mape = [] train_rmse = [] t1 = time.time() dataloader['train_loader'].shuffle() for iter, (x, y) in enumerate(dataloader['train_loader'].get_iterator()): trainx = torch.Tensor(x).to(device) trainx= trainx.transpose(1, 3) trainy = torch.Tensor(y).to(device) trainy = trainy.transpose(1, 3) metrics = engine.train(trainx, trainy[:,0,:,:]) train_loss.append(metrics[0]) train_mape.append(metrics[1]) train_rmse.append(metrics[2]) if iter % args.print_every == 0 : log = 'Iter: {:03d}, Train Loss: {:.4f}, Train MAPE: {:.4f}, Train RMSE: {:.4f}' print(log.format(iter, train_loss[-1], train_mape[-1], train_rmse[-1]),flush=True) t2 = time.time() train_time.append(t2-t1) #validation valid_loss = [] valid_mape = [] valid_rmse = [] s1 = time.time() for iter, (x, y) in enumerate(dataloader['val_loader'].get_iterator()): testx = torch.Tensor(x).to(device) testx = testx.transpose(1, 3) testy = torch.Tensor(y).to(device) testy = testy.transpose(1, 3) metrics = engine.eval(testx, testy[:,0,:,:]) valid_loss.append(metrics[0]) valid_mape.append(metrics[1]) valid_rmse.append(metrics[2]) s2 = time.time() log = 'Epoch: {:03d}, Inference Time: {:.4f} secs' print(log.format(i,(s2-s1))) val_time.append(s2-s1) mtrain_loss = np.mean(train_loss) mtrain_mape = np.mean(train_mape) mtrain_rmse = np.mean(train_rmse) mvalid_loss = np.mean(valid_loss) mvalid_mape = np.mean(valid_mape) mvalid_rmse = np.mean(valid_rmse) his_loss.append(mvalid_loss) log = 'Epoch: {:03d}, Train Loss: {:.4f}, Train MAPE: {:.4f}, Train RMSE: {:.4f}, Valid Loss: {:.4f}, Valid MAPE: {:.4f}, Valid RMSE: {:.4f}, Training Time: {:.4f}/epoch' print(log.format(i, mtrain_loss, mtrain_mape, mtrain_rmse, mvalid_loss, mvalid_mape, mvalid_rmse, (t2 - t1)),flush=True) torch.save(engine.model.state_dict(), args.save+"_epoch_"+str(i)+"_"+str(round(mvalid_loss,2))+".pth") print("Average Training Time: {:.4f} secs/epoch".format(np.mean(train_time))) print("Average Inference Time: {:.4f} secs".format(np.mean(val_time))) #testing bestid = np.argmin(his_loss) engine.model.load_state_dict(torch.load(args.save+"_epoch_"+str(bestid+1)+"_"+str(round(his_loss[bestid],2))+".pth")) outputs = [] realy = torch.Tensor(dataloader['y_test']).to(device) realy = realy.transpose(1,3)[:,0,:,:] for iter, (x, y) in enumerate(dataloader['test_loader'].get_iterator()): testx = torch.Tensor(x).to(device) testx = testx.transpose(1,3) with torch.no_grad(): preds = engine.model(testx).transpose(1,3) outputs.append(preds.squeeze()) yhat = torch.cat(outputs,dim=0) yhat = yhat[:realy.size(0),...] print("Training finished") print("The valid loss on best model is", str(round(his_loss[bestid],4))) amae = [] amape = [] armse = [] for i in range(12): pred = scaler.inverse_transform(yhat[:,:,i]) real = realy[:,:,i] metrics = util.metric(pred,real) log = 'Evaluate best model on test data for horizon {:d}, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}' print(log.format(i+1, metrics[0], metrics[1], metrics[2])) amae.append(metrics[0]) amape.append(metrics[1]) armse.append(metrics[2]) log = 'On average over 12 horizons, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}' print(log.format(np.mean(amae),np.mean(amape),np.mean(armse))) torch.save(engine.model.state_dict(), args.save+"_exp"+str(args.expid)+"_best_"+str(round(his_loss[bestid],2))+".pth")
def main(): device = torch.device(args.device) _, _, adj_mx = util.load_adj(args.adjdata, args.adjtype) supports = [torch.tensor(i).to(device) for i in adj_mx] if args.randomadj: adjinit = None else: adjinit = supports[0] if args.aptonly: supports = None eR_seq_size = 24 # 24 dataloader = util.load_dataset(args.data, args.batch_size, args.batch_size, args.batch_size, eRec=args.eRec, eR_seq_size=eR_seq_size, suffix=args.suffix_train) scaler = dataloader['scaler'] dataloader = util.load_dataset(args.data, args.batch_size, args.batch_size, args.batch_size, eRec=args.eRec, eR_seq_size=eR_seq_size, suffix=args.suffix, scaler=scaler) blocks = int(dataloader[f'x_test{args.suffix}'].shape[1] / 3) # Every block reduce the input sequence size by 3. print(f'blocks = {blocks}') if args.eRec: error_size = 6 model = eRGwnet(device, args.num_nodes, args.dropout, supports=supports, gcn_bool=args.gcn_bool, addaptadj=args.addaptadj, adjinit=adjinit, in_dim=args.in_dim, out_dim=args.seq_length, residual_channels=args.nhid, dilation_channels=args.nhid, skip_channels=args.nhid * 8, end_channels=args.nhid * 16, blocks=blocks, error_size=error_size) else: model = gwnet(device, args.num_nodes, args.dropout, supports=supports, gcn_bool=args.gcn_bool, addaptadj=args.addaptadj, adjinit=adjinit, in_dim=args.in_dim, out_dim=args.seq_length, residual_channels=args.nhid, dilation_channels=args.nhid, skip_channels=args.nhid * 8, end_channels=args.nhid * 16, blocks=blocks) model.to(device) model.load_state_dict( torch.load(args.checkpoint, map_location=torch.device(device))) model.eval() print('model load successfully') outputs = [] realy = torch.Tensor(dataloader[f'y_test{args.suffix}']).to(device) if args.eRec: realy = realy.transpose(0, 1)[-1, :, :, :, :] realy = realy.transpose(1, 3)[:, 0, :, :] for iter, (x, y) in enumerate(dataloader['test_loader'].get_iterator()): testx = torch.Tensor(x).to(device) testy = torch.Tensor(y).to(device) if args.eRec: testx = testx.transpose(0, 1) testy = testy.transpose(0, 1) testx = testx.transpose(-3, -1) testy = testy.transpose(-3, -1) # print(f'testx.shape = {testx.shape}') with torch.no_grad(): if args.eRec: preds = model(testx, testy[:, :, 0:1, :, :], scaler).transpose(1, 3) else: preds = model(testx).transpose(1, 3) outputs.append(preds.squeeze()) yhat = torch.cat(outputs, dim=0) print(f'yhat before shape = {yhat.shape}') yhat = yhat[:realy.size(0), ...] print(f'yhat shape = {yhat.shape}') amae = [] amape = [] armse = [] for i in range(args.seq_length): pred = scaler.inverse_transform(yhat[:, :, i]) real = realy[:, :, i] metrics = util.metric(pred, real) log = 'Evaluate best model on test data for horizon {:d}, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}' print(log.format(i + 1, metrics[0], metrics[1], metrics[2])) amae.append(metrics[0]) amape.append(metrics[1]) armse.append(metrics[2]) log = 'On average over 12 horizons, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}' print(log.format(np.mean(amae), np.mean(amape), np.mean(armse))) mse = nn.MSELoss(reduction='none') mae = nn.L1Loss(reduction='none') pred = scaler.inverse_transform(yhat) loss_mse = mse(pred, realy).transpose(1, 2) loss_mae = mae(pred, realy).transpose(1, 2) print(f'loss_mae shape = {loss_mae.shape}') if not args.eRec: model_name = f'gwnet{args.suffix}' else: model_name = f'eRgwnet{args.suffix}' print_results(model_name, loss_mse, loss_mae) plot_results(model_name, loss_mae, detector=1) if args.plotheatmap == "True": adp = F.softmax(F.relu(torch.mm(model.nodevec1, model.nodevec2)), dim=1) device = torch.device('cpu') adp.to(device) adp = adp.cpu().detach().numpy() adp = adp * (1 / np.max(adp)) df = pd.DataFrame(adp) sns.heatmap(df, cmap="RdYlBu") plt.savefig("./emb" + '.pdf') y12 = realy[:, -1, -1].cpu().detach().numpy() yhat12 = scaler.inverse_transform(yhat[:, -1, -1]).cpu().detach().numpy() y3 = realy[:, -1, 2].cpu().detach().numpy() yhat3 = scaler.inverse_transform(yhat[:, -1, 2]).cpu().detach().numpy() df2 = pd.DataFrame({ 'real12': y12, 'pred12': yhat12, 'real3': y3, 'pred3': yhat3 }) df2.to_csv('./wave.csv', index=False)
def main(): #set seed #torch.manual_seed(args.seed) #np.random.seed(args.seed) #load data frequencies = np.array([ 8.176, 8.662, 9.177, 9.723, 10.301, 10.913, 11.562, 12.250, 12.978, 13.750, 14.568, 15.434, 16.352, 17.324, 18.354, 19.445, 20.601, 21.826, 23.124, 24.499, 25.956, 27.500, 29.135, 30.867, 32.703, 34.648, 36.708, 38.890, 41.203, 43.653, 46.249, 48.999, 51.913, 55.000, 58.270, 61.735, 65.406, 69.295, 73.416, 77.781, 82.406, 87.307, 92.499, 97.998, 103.82, 110.00, 116.54, 123.47, 130.81, 138.59, 146.83, 155.56, 164.81, 174.61, 184.99, 195.99, 207.65, 220.00, 233.08, 246.94, 261.63, 277.18, 293.66, 311.13, 329.63, 349.23, 369.99, 391.99, 415.31, 440.00, 466.16, 439.88, 523.25, 554.37, 587.33, 622.25, 659.26, 698.46, 739.99, 783.99, 830.61, 880.00, 932.32, 987.77, 1046.5, 1108.7, 1174.7, 1244.5, 1318.5, 1396.9, 1480.0, 1568.0, 1661.2, 1760.0, 1864.7, 1975.5, 2093.0, 2217.5, 2349.3, 2489.0, 2637.0, 2793.8, 2960.0, 3136.0, 3322.4, 3520.0, 3729.3, 3951.1, 4186.0, 4434.9, 4698.6, 4978.0, 5274.0, 5587.7, 5919.9, 6271.9, 6644.9, 7040.0, 7458.6, 7902.1, 8372.0, 8869.8, 9397.3, 9956.1, 10548.1, 11175.3, 11839.8, 12543.9 ]) piano_adj = np.zeros((128, 128)) for row in range(128): piano_adj[row] = frequencies - frequencies[row] print(piano_adj[10:20, 10:20]) device = torch.device(args.device) adj_mx = util.load_piano_adj(piano_adj, args.adjtype) dataloader = util.load_dataset(args.data, args.batch_size, args.batch_size, args.batch_size) scaler = dataloader['scaler'] supports = [torch.tensor(i).to(device) for i in adj_mx] print(type(adj_mx)) print(len(adj_mx)) for elem in adj_mx: print(type(elem)) print(elem[10:20, 10:20]) print(elem.shape) print(args) time.sleep(2) print("tsadf" + 24) if args.randomadj: adjinit = None else: adjinit = supports[0] if args.aptonly: supports = None # print(adjinit) # # print(supports[0]) # print("sfdssg" + 234) engine = trainer(scaler, args.in_dim, args.seq_length, args.num_nodes, args.nhid, args.dropout, args.learning_rate, args.weight_decay, device, supports, args.gcn_bool, args.addaptadj, adjinit) print("start training...", flush=True) his_loss = [] val_time = [] train_time = [] for i in range(1, args.epochs + 1): #if i % 10 == 0: #lr = max(0.000002,args.learning_rate * (0.1 ** (i // 10))) #for g in engine.optimizer.param_groups: #g['lr'] = lr train_loss = [] train_mape = [] train_rmse = [] t1 = time.time() dataloader['train_loader'].shuffle() for iter, (x, y) in enumerate(dataloader['train_loader'].get_iterator()): trainx = torch.Tensor(x).to(device) trainx = trainx.transpose(1, 3) trainy = torch.Tensor(y).to(device) trainy = trainy.transpose(1, 3) metrics = engine.train(trainx, trainy[:, 0, :, :]) train_loss.append(metrics[0]) train_mape.append(metrics[1]) train_rmse.append(metrics[2]) if iter % args.print_every == 0: log = 'Iter: {:03d}, Train Loss: {:.4f}, Train MAPE: {:.4f}, Train RMSE: {:.4f}' print(log.format(iter, train_loss[-1], train_mape[-1], train_rmse[-1]), flush=True) t2 = time.time() train_time.append(t2 - t1) #validation valid_loss = [] valid_mape = [] valid_rmse = [] s1 = time.time() for iter, (x, y) in enumerate(dataloader['val_loader'].get_iterator()): testx = torch.Tensor(x).to(device) testx = testx.transpose(1, 3) testy = torch.Tensor(y).to(device) testy = testy.transpose(1, 3) metrics = engine.eval(testx, testy[:, 0, :, :]) valid_loss.append(metrics[0]) valid_mape.append(metrics[1]) valid_rmse.append(metrics[2]) s2 = time.time() log = 'Epoch: {:03d}, Inference Time: {:.4f} secs' print(log.format(i, (s2 - s1))) val_time.append(s2 - s1) mtrain_loss = np.mean(train_loss) mtrain_mape = np.mean(train_mape) mtrain_rmse = np.mean(train_rmse) mvalid_loss = np.mean(valid_loss) mvalid_mape = np.mean(valid_mape) mvalid_rmse = np.mean(valid_rmse) his_loss.append(mvalid_loss) log = 'Epoch: {:03d}, Train Loss: {:.4f}, Train MAPE: {:.4f}, Train RMSE: {:.4f}, Valid Loss: {:.4f}, Valid MAPE: {:.4f}, Valid RMSE: {:.4f}, Training Time: {:.4f}/epoch' print(log.format(i, mtrain_loss, mtrain_mape, mtrain_rmse, mvalid_loss, mvalid_mape, mvalid_rmse, (t2 - t1)), flush=True) torch.save( engine.model.state_dict(), args.save + "_epoch_" + str(i) + "_" + str(round(mvalid_loss, 2)) + ".pth") print("Average Training Time: {:.4f} secs/epoch".format( np.mean(train_time))) print("Average Inference Time: {:.4f} secs".format(np.mean(val_time))) #testing bestid = np.argmin(his_loss) engine.model.load_state_dict( torch.load(args.save + "_epoch_" + str(bestid + 1) + "_" + str(round(his_loss[bestid], 2)) + ".pth")) outputs = [] realy = torch.Tensor(dataloader['y_test']).to(device) realy = realy.transpose(1, 3)[:, 0, :, :] for iter, (x, y) in enumerate(dataloader['test_loader'].get_iterator()): testx = torch.Tensor(x).to(device) testx = testx.transpose(1, 3) with torch.no_grad(): preds = engine.model(testx).transpose(1, 3) outputs.append(preds.squeeze()) yhat = torch.cat(outputs, dim=0) yhat = yhat[:realy.size(0), ...] print("Training finished") print("The valid loss on best model is", str(round(his_loss[bestid], 4))) amae = [] amape = [] armse = [] for i in range(12): pred = scaler.inverse_transform(yhat[:, :, i]) real = realy[:, :, i] metrics = util.metric(pred, real) log = 'Evaluate best model on test data for horizon {:d}, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}' print(log.format(i + 1, metrics[0], metrics[1], metrics[2])) amae.append(metrics[0]) amape.append(metrics[1]) armse.append(metrics[2]) log = 'On average over 12 horizons, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}' print(log.format(np.mean(amae), np.mean(amape), np.mean(armse))) torch.save( engine.model.state_dict(), args.save + "_exp" + str(args.expid) + "_best_" + str(round(his_loss[bestid], 2)) + ".pth")
pred = util.re_normalization(out, mean[0], std[0]) label = util.re_normalization(normalization_label, mean[0], std[0]) loss = criterion(out, y[:, :, :, 0]) val_losses.append(loss.detach().cpu().numpy()) val_pred.append(pred.cpu().detach().numpy()) val_label.append(label) val_loss = sum(val_losses) validation_losses.append(val_loss) val_pred_ = np.concatenate(val_pred, axis=0) val_label_ = np.concatenate(val_label, axis=0) val_mae, val_rmse, val_mape, b = util.metric(val_pred_, val_label_) validation_rmse_set.append(val_rmse) validation_MAE_set.append(val_mae) end = process_time() running_time_set.append(end - start) if val_rmse < best_val_loss: stop = 0 best_val_loss = val_rmse params_filename = osp.join(args.save, 'params') torch.save( { 'epoch': epoch, 'model_state_dict': net.state_dict(), 'opt_state_dict': optimizer.state_dict(),
def main(): #set seed #torch.manual_seed(args.seed) #np.random.seed(args.seed) #load data device = torch.device(args.device) sensor_ids, sensor_id_to_ind, adj_mx = util.load_adj( args.adjdata, args.adjtype) dataloader = util.load_dataset(args.data, args.batch_size, args.batch_size, args.batch_size) #scaler = dataloader['scaler'] supports = [torch.tensor(i).to(device) for i in adj_mx] print(args) if args.model == 'gwnet': engine = trainer1(args.in_dim, args.seq_length, args.num_nodes, args.nhid, args.dropout, args.learning_rate, args.weight_decay, device, supports, args.decay) elif args.model == 'ASTGCN_Recent': engine = trainer2(args.in_dim, args.seq_length, args.num_nodes, args.nhid, args.dropout, args.learning_rate, args.weight_decay, device, supports, args.decay) elif args.model == 'GRCN': engine = trainer3(args.in_dim, args.seq_length, args.num_nodes, args.nhid, args.dropout, args.learning_rate, args.weight_decay, device, supports, args.decay) elif args.model == 'Gated_STGCN': engine = trainer4(args.in_dim, args.seq_length, args.num_nodes, args.nhid, args.dropout, args.learning_rate, args.weight_decay, device, supports, args.decay) elif args.model == 'H_GCN_wh': engine = trainer5(args.in_dim, args.seq_length, args.num_nodes, args.nhid, args.dropout, args.learning_rate, args.weight_decay, device, supports, args.decay) elif args.model == 'OGCRNN': engine = trainer8(args.in_dim, args.seq_length, args.num_nodes, args.nhid, args.dropout, args.learning_rate, args.weight_decay, device, supports, args.decay) elif args.model == 'OTSGGCN': engine = trainer9(args.in_dim, args.seq_length, args.num_nodes, args.nhid, args.dropout, args.learning_rate, args.weight_decay, device, supports, args.decay) elif args.model == 'LSTM': engine = trainer10(args.in_dim, args.seq_length, args.num_nodes, args.nhid, args.dropout, args.learning_rate, args.weight_decay, device, supports, args.decay) elif args.model == 'GRU': engine = trainer11(args.in_dim, args.seq_length, args.num_nodes, args.nhid, args.dropout, args.learning_rate, args.weight_decay, device, supports, args.decay) # check parameters file params_path = args.save + "/" + args.model if os.path.exists(params_path) and not args.force: raise SystemExit( "Params folder exists! Select a new params path please!") else: if os.path.exists(params_path): shutil.rmtree(params_path) os.makedirs(params_path) print('Create params directory %s' % (params_path)) print("start training...", flush=True) his_loss = [] val_time = [] train_time = [] for i in range(1, args.epochs + 1): #if i % 10 == 0: #lr = max(0.000002,args.learning_rate * (0.1 ** (i // 10))) #for g in engine.optimizer.param_groups: #g['lr'] = lr train_loss = [] train_mae = [] train_mape = [] train_rmse = [] t1 = time.time() dataloader['train_loader'].shuffle() for iter, (x, y) in enumerate(dataloader['train_loader'].get_iterator()): trainx = torch.Tensor(x).to(device) trainx = trainx.transpose(1, 3) trainy = torch.Tensor(y).to(device) trainy = trainy.transpose(1, 3) metrics = engine.train(trainx, trainy[:, 0, :, :]) train_loss.append(metrics[0]) train_mae.append(metrics[1]) train_mape.append(metrics[2]) train_rmse.append(metrics[3]) #if iter % args.print_every == 0 : # log = 'Iter: {:03d}, Train Loss: {:.4f}, Train MAPE: {:.4f}, Train RMSE: {:.4f}' # print(log.format(iter, train_loss[-1], train_mape[-1], train_rmse[-1]),flush=True) t2 = time.time() train_time.append(t2 - t1) #validation valid_loss = [] valid_mae = [] valid_mape = [] valid_rmse = [] s1 = time.time() for iter, (x, y) in enumerate(dataloader['val_loader'].get_iterator()): testx = torch.Tensor(x).to(device) testx = testx.transpose(1, 3) testy = torch.Tensor(y).to(device) testy = testy.transpose(1, 3) metrics = engine.eval(testx, testy[:, 0, :, :]) valid_loss.append(metrics[0]) valid_mae.append(metrics[1]) valid_mape.append(metrics[2]) valid_rmse.append(metrics[3]) s2 = time.time() log = 'Epoch: {:03d}, Inference Time: {:.4f} secs' print(log.format(i, (s2 - s1))) val_time.append(s2 - s1) mtrain_loss = np.mean(train_loss) mtrain_mae = np.mean(train_mae) mtrain_mape = np.mean(train_mape) mtrain_rmse = np.mean(train_rmse) mvalid_loss = np.mean(valid_loss) mvalid_mae = np.mean(valid_mae) mvalid_mape = np.mean(valid_mape) mvalid_rmse = np.mean(valid_rmse) his_loss.append(mvalid_loss) log = 'Epoch: {:03d}, Train Loss: {:.4f}, Train MAE: {:.4f}, Train MAPE: {:.4f}, Train RMSE: {:.4f}, Valid Loss: {:.4f}, Valid MAE: {:.4f}, Valid MAPE: {:.4f}, Valid RMSE: {:.4f}, Training Time: {:.4f}/epoch' print(log.format(i, mtrain_loss, mtrain_mae, mtrain_mape, mtrain_rmse, mvalid_loss, mvalid_mae, mvalid_mape, mvalid_rmse, (t2 - t1)), flush=True) torch.save( engine.model.state_dict(), params_path + "/" + args.model + "_epoch_" + str(i) + "_" + str(round(mvalid_loss, 2)) + ".pth") print("Average Training Time: {:.4f} secs/epoch".format( np.mean(train_time))) print("Average Inference Time: {:.4f} secs".format(np.mean(val_time))) #testing bestid = np.argmin(his_loss) engine.model.load_state_dict( torch.load(params_path + "/" + args.model + "_epoch_" + str(bestid + 1) + "_" + str(round(his_loss[bestid], 2)) + ".pth")) engine.model.eval() outputs = [] realy = torch.Tensor(dataloader['y_test']).to(device) realy = realy.transpose(1, 3)[:, 0, :, :] for iter, (x, y) in enumerate(dataloader['test_loader'].get_iterator()): testx = torch.Tensor(x).to(device) testx = testx.transpose(1, 3) with torch.no_grad(): preds, spatial_at, parameter_adj = engine.model(testx) preds = preds.transpose(1, 3) outputs.append(preds.squeeze()) yhat = torch.cat(outputs, dim=0) yhat = yhat[:realy.size(0), ...] print("Training finished") print("The valid loss on best model is", str(round(his_loss[bestid], 4))) amae = [] amape = [] armse = [] prediction = yhat for i in range(12): pred = prediction[:, :, i] #pred = scaler.inverse_transform(yhat[:,:,i]) #prediction.append(pred) real = realy[:, :, i] metrics = util.metric(pred, real) log = 'Evaluate best model on test data for horizon {:d}, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}' print(log.format(i + 1, metrics[0], metrics[1], metrics[2])) amae.append(metrics[0]) amape.append(metrics[1]) armse.append(metrics[2]) log = 'On average over 12 horizons, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}' print(log.format(np.mean(amae), np.mean(amape), np.mean(armse))) torch.save( engine.model.state_dict(), params_path + "/" + args.model + "_exp" + str(args.expid) + "_best_" + str(round(his_loss[bestid], 2)) + ".pth") prediction_path = params_path + "/" + args.model + "_prediction_results" ground_truth = realy.cpu().detach().numpy() prediction = prediction.cpu().detach().numpy() spatial_at = spatial_at.cpu().detach().numpy() parameter_adj = parameter_adj.cpu().detach().numpy() np.savez_compressed(os.path.normpath(prediction_path), prediction=prediction, spatial_at=spatial_at, parameter_adj=parameter_adj, ground_truth=ground_truth)
def main(): frequencies = np.array([ 8.176, 8.662, 9.177, 9.723, 10.301, 10.913, 11.562, 12.250, 12.978, 13.750, 14.568, 15.434, 16.352, 17.324, 18.354, 19.445, 20.601, 21.826, 23.124, 24.499, 25.956, 27.500, 29.135, 30.867, 32.703, 34.648, 36.708, 38.890, 41.203, 43.653, 46.249, 48.999, 51.913, 55.000, 58.270, 61.735, 65.406, 69.295, 73.416, 77.781, 82.406, 87.307, 92.499, 97.998, 103.82, 110.00, 116.54, 123.47, 130.81, 138.59, 146.83, 155.56, 164.81, 174.61, 184.99, 195.99, 207.65, 220.00, 233.08, 246.94, 261.63, 277.18, 293.66, 311.13, 329.63, 349.23, 369.99, 391.99, 415.31, 440.00, 466.16, 439.88, 523.25, 554.37, 587.33, 622.25, 659.26, 698.46, 739.99, 783.99, 830.61, 880.00, 932.32, 987.77, 1046.5, 1108.7, 1174.7, 1244.5, 1318.5, 1396.9, 1480.0, 1568.0, 1661.2, 1760.0, 1864.7, 1975.5, 2093.0, 2217.5, 2349.3, 2489.0, 2637.0, 2793.8, 2960.0, 3136.0, 3322.4, 3520.0, 3729.3, 3951.1, 4186.0, 4434.9, 4698.6, 4978.0, 5274.0, 5587.7, 5919.9, 6271.9, 6644.9, 7040.0, 7458.6, 7902.1, 8372.0, 8869.8, 9397.3, 9956.1, 10548.1, 11175.3, 11839.8, 12543.9 ]) piano_adj = np.zeros((128, 128)) for row in range(128): piano_adj[row] = frequencies - frequencies[row] device = torch.device(args.device) adj_mx = util.load_piano_adj(piano_adj, args.adjtype) supports = [torch.tensor(i).to(device) for i in adj_mx] if args.randomadj: adjinit = None else: adjinit = supports[0] if args.aptonly: supports = None model = gwnet(device, args.num_nodes, args.dropout, supports=supports, gcn_bool=args.gcn_bool, addaptadj=args.addaptadj, aptinit=adjinit, in_dim=args.in_dim, out_dim=args.seq_length, residual_channels=args.nhid, dilation_channels=args.nhid, skip_channels=args.nhid * 8, end_channels=args.nhid * 16) model.to(device) model.load_state_dict(torch.load(args.checkpoint)) model.eval() print('model load successfully') dataloader = util.load_dataset(args.data, args.batch_size, args.batch_size, args.batch_size) scaler = dataloader['scaler'] outputs = [] realy = torch.Tensor(dataloader['y_test']).to(device) realy = realy.transpose(1, 3)[:, 0, :, :] for iter, (x, y) in enumerate(dataloader['test_loader'].get_iterator()): testx = torch.Tensor(x).to(device) # print(x.shape) testx = testx.transpose(1, 3) # print(x.shape) with torch.no_grad(): preds = model(testx).transpose(1, 3) # print(preds.shape) outputs.append(preds.squeeze()) break # print(len(outputs)) # print(outputs[0].shape) yhat = torch.cat(outputs, dim=0) # print(yhat.shape) yhat = yhat[:realy.size(0), ...] # print(yhat.shape) amae = [] amape = [] armse = [] for i in range(12): pred = scaler.inverse_transform(yhat[:, :, i]) # print(pred.shape) # time.sleep(1) # print("asdf" + 234) real = realy[:, :, i] metrics = util.metric(pred, real) log = 'Evaluate best model on test data for horizon {:d}, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}' print(log.format(i + 1, metrics[0], metrics[1], metrics[2])) amae.append(metrics[0]) amape.append(metrics[1]) armse.append(metrics[2]) log = 'On average over 12 horizons, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}' print(log.format(np.mean(amae), np.mean(amape), np.mean(armse))) if args.plotheatmap == "True": adp = F.softmax(F.relu(torch.mm(model.nodevec1, model.nodevec2)), dim=1) device = torch.device('cpu') adp.to(device) adp = adp.cpu().detach().numpy() adp = adp * (1 / np.max(adp)) df = pd.DataFrame(adp) sns.heatmap(df, cmap="RdYlBu") plt.savefig("./emb" + '.pdf') y12 = realy[:, 99, 11].cpu().detach().numpy() yhat12 = scaler.inverse_transform(yhat[:, 99, 11]).cpu().detach().numpy() y3 = realy[:, 99, 2].cpu().detach().numpy() yhat3 = scaler.inverse_transform(yhat[:, 99, 2]).cpu().detach().numpy() df2 = pd.DataFrame({ 'real12': y12, 'pred12': yhat12, 'real3': y3, 'pred3': yhat3 }) df2.to_csv('./wave.csv', index=False)
def main(): #set seed args.seed = args.seed if args.seed else \ np.random.randint(0, np.iinfo("uint32").max, size=1)[-1] torch.manual_seed(args.seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False np.random.seed(args.seed) # update run_name & save_dir args.run_name += "_".join( [args.data_type, str(args.seq_length), str(args.seed)]) args.save += args.run_name + "/" os.makedirs(args.save) wandb.init(config=args, project=args.project_name, name=args.run_name) #load data device = torch.device(args.device) sensor_ids, sensor_id_to_ind, adj_mx = util.load_adj( args.adjdata, args.adjtype) dataloader = util.load_dataset(args.data, args.batch_size, args.batch_size, args.batch_size) scaler = dataloader['scaler'] supports = [torch.tensor(i).to(device) for i in adj_mx] print(args) if args.randomadj: adjinit = None else: adjinit = supports[0] if args.aptonly: supports = None engine = trainer(scaler, args.in_dim, args.seq_length, args.num_nodes, args.nhid, args.dropout, args.learning_rate, args.weight_decay, device, supports, args.gcn_bool, args.addaptadj, adjinit, args.impute_type) print("start training...", flush=True) his_loss = [] val_time = [] train_time = [] for i in tqdm(range(1, args.epochs + 1)): train_loss = [] train_mape = [] train_rmse = [] t1 = time.time() if i > 1: # Skip shuffling for 1st epoch for data imputation dataloader['train_loader'].shuffle() for iter, (x, y) in enumerate(dataloader['train_loader'].get_iterator()): if i == 1 or engine.imputer.type == "GCN": trainx = engine.imputer(x.transpose(1, 3), engine.model.get_supports()) else: trainx = x.transpose(1, 3) trainx = trainx.to(device) trainy = torch.Tensor(y).to(device) trainy = trainy.transpose(1, 3) metrics = engine.train(trainx, trainy[:, 0, :, :]) train_loss.append(metrics[0]) train_mape.append(metrics[1]) train_rmse.append(metrics[2]) if iter % args.print_every == 0: log = 'Iter: {:03d}, Train Loss: {:.4f}, Train MAPE: {:.4f}, Train RMSE: {:.4f}' print(log.format(iter, train_loss[-1], train_mape[-1], train_rmse[-1]), flush=True) t2 = time.time() train_time.append(t2 - t1) #validation valid_loss = [] valid_mape = [] valid_rmse = [] s1 = time.time() for iter, (x, y) in enumerate(dataloader['val_loader'].get_iterator()): if i == 1 or engine.imputer.type == "GCN": testx = engine.imputer(x.transpose(1, 3), engine.model.get_supports()) else: testx = x.transpose(1, 3) testx = testx.to(device) testy = torch.Tensor(y).to(device) testy = testy.transpose(1, 3) metrics = engine.eval(testx, testy[:, 0, :, :]) valid_loss.append(metrics[0]) valid_mape.append(metrics[1]) valid_rmse.append(metrics[2]) s2 = time.time() log = 'Epoch: {:03d}, Inference Time: {:.4f} secs' print(log.format(i, (s2 - s1))) val_time.append(s2 - s1) mtrain_loss = np.mean(train_loss) mtrain_mape = np.mean(train_mape) mtrain_rmse = np.mean(train_rmse) mvalid_loss = np.mean(valid_loss) mvalid_mape = np.mean(valid_mape) mvalid_rmse = np.mean(valid_rmse) his_loss.append(mvalid_loss) log = 'Epoch: {:03d}, Train Loss: {:.4f}, Train MAPE: {:.4f}, Train RMSE: {:.4f}, Valid Loss: {:.4f}, Valid MAPE: {:.4f}, Valid RMSE: {:.4f}, Training Time: {:.4f}/epoch' print(log.format(i, mtrain_loss, mtrain_mape, mtrain_rmse, mvalid_loss, mvalid_mape, mvalid_rmse, (t2 - t1)), flush=True) torch.save( engine.model.state_dict(), args.save + "epoch_" + str(i) + "_" + str(round(mvalid_loss, 2)) + ".pth") wandb.log( { "Train MAE": mtrain_loss, "Train MAPE": mtrain_mape, "Train RMSE": mtrain_rmse, "Validation MAE": mvalid_loss, "Validation MAPE": mvalid_mape, "Validation RMSE": mvalid_rmse }, step=i) print("Average Training Time: {:.4f} secs/epoch".format( np.mean(train_time))) print("Average Inference Time: {:.4f} secs".format(np.mean(val_time))) #testing bestid = np.argmin(his_loss) engine.model.load_state_dict( torch.load(args.save + "epoch_" + str(bestid + 1) + "_" + str(round(his_loss[bestid], 2)) + ".pth")) outputs = [] realy = torch.Tensor(dataloader['y_test']).to(device) realy = realy.transpose(1, 3)[:, 0, :, :] for iter, (x, y) in enumerate(dataloader['test_loader'].get_iterator()): with torch.no_grad(): testx = engine.imputer(x.transpose(1, 3), engine.model.get_supports()) testx = testx.to(device) preds = engine.model(testx).transpose(1, 3) outputs.append(preds.squeeze(1)) yhat = torch.cat(outputs, dim=0) yhat = yhat[:realy.size(0), ...] print("Training finished") print("The valid loss on best model is", str(round(his_loss[bestid], 4))) amae = [] amape = [] armse = [] for i in range(args.seq_length): pred = scaler.inverse_transform(yhat[:, :, i]) real = realy[:, :, i] metrics = util.metric(pred, real) log = 'Evaluate best model on test data for horizon {:d}, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}' print(log.format(i + 1, metrics[0], metrics[1], metrics[2])) amae.append(metrics[0]) amape.append(metrics[1]) armse.append(metrics[2]) wandb.log( { "Test MAE": metrics[0], "Test MAPE": metrics[1], "Test RMSE": metrics[2] }, step=i + args.epochs + 1) log = 'On average over horizons, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}' print(log.format(np.mean(amae), np.mean(amape), np.mean(armse))) wandb.log({ "Avg Test MAE": np.mean(amae), "Avg Test MAPE": np.mean(amape), "Avg Test RMSE": np.mean(armse) }) torch.save(engine.model.state_dict(), args.save + "best_" + str(round(his_loss[bestid], 2)) + ".pth")
def main(): #load data device = torch.device(args.device) sensor_ids, sensor_id_to_ind, adj_mx = util.load_adj( args.adjdata, args.adjtype) sensor_ids_cluster, sensor_id_to_ind_cluster, adj_mx_cluster = util.load_adj( args.adjdatacluster, args.adjtype) dataloader = util.load_dataset_cluster(args.data, args.batch_size, args.batch_size, args.batch_size) #scaler = dataloader['scaler'] supports = [torch.tensor(i).to(device) for i in adj_mx] supports_cluster = [torch.tensor(i).to(device) for i in adj_mx_cluster] transmit_np = np.float32(np.loadtxt(args.transmit, delimiter=',')) transmit = torch.tensor(transmit_np).to(device) print(args) if args.model == 'H_GCN': engine = trainer7(args.in_dim, args.in_dim_cluster, args.seq_length, args.num_nodes, args.cluster_nodes, args.nhid, args.dropout, args.learning_rate, args.weight_decay, device, supports, supports_cluster, transmit, args.decay) elif args.model == 'H_GCN_wdf': engine = trainer6(args.in_dim, args.in_dim_cluster, args.seq_length, args.num_nodes, args.cluster_nodes, args.nhid, args.dropout, args.learning_rate, args.weight_decay, device, supports, supports_cluster, transmit, args.decay) # check parameters file params_path = args.save + "/" + args.model if os.path.exists(params_path) and not args.force: raise SystemExit( "Params folder exists! Select a new params path please!") else: if os.path.exists(params_path): shutil.rmtree(params_path) os.makedirs(params_path) print('Create params directory %s' % (params_path)) print("start training...", flush=True) his_loss = [] val_time = [] train_time = [] for i in range(1, args.epochs + 1): train_loss = [] train_mae = [] train_mape = [] train_rmse = [] t1 = time.time() dataloader['train_loader_cluster'].shuffle() for iter, (x, y, x_cluster, y_cluster) in enumerate( dataloader['train_loader_cluster'].get_iterator()): trainx = torch.Tensor(x).to(device) trainx = trainx.transpose(1, 3) trainy = torch.Tensor(y).to(device) trainy = trainy.transpose(1, 3) trainx_cluster = torch.Tensor(x_cluster).to(device) trainx_cluster = trainx_cluster.transpose(1, 3) trainy_cluster = torch.Tensor(y_cluster).to(device) trainy_cluster = trainy_cluster.transpose(1, 3) metrics = engine.train(trainx, trainx_cluster, trainy[:, 0, :, :], trainy_cluster) train_loss.append(metrics[0]) train_mae.append(metrics[1]) train_mape.append(metrics[2]) train_rmse.append(metrics[3]) #engine.scheduler.step() t2 = time.time() train_time.append(t2 - t1) #validation valid_loss = [] valid_mae = [] valid_mape = [] valid_rmse = [] s1 = time.time() for iter, (x, y, x_cluster, y_cluster) in enumerate( dataloader['val_loader_cluster'].get_iterator()): validx = torch.Tensor(x).to(device) validx = validx.transpose(1, 3) validy = torch.Tensor(y).to(device) validy = validy.transpose(1, 3) validx_cluster = torch.Tensor(x_cluster).to(device) validx_cluster = validx_cluster.transpose(1, 3) validy_cluster = torch.Tensor(y_cluster).to(device) validy_cluster = validy_cluster.transpose(1, 3) metrics = engine.eval(validx, validx_cluster, validy[:, 0, :, :], validy_cluster) valid_loss.append(metrics[0]) valid_mae.append(metrics[1]) valid_mape.append(metrics[2]) valid_rmse.append(metrics[3]) s2 = time.time() log = 'Epoch: {:03d}, Inference Time: {:.4f} secs' print(log.format(i, (s2 - s1))) val_time.append(s2 - s1) mtrain_loss = np.mean(train_loss) mtrain_mae = np.mean(train_mae) mtrain_mape = np.mean(train_mape) mtrain_rmse = np.mean(train_rmse) mvalid_loss = np.mean(valid_loss) mvalid_mae = np.mean(valid_mae) mvalid_mape = np.mean(valid_mape) mvalid_rmse = np.mean(valid_rmse) his_loss.append(mvalid_loss) log = 'Epoch: {:03d}, Train Loss: {:.4f}, Train MAE: {:.4f}, Train MAPE: {:.4f}, Train RMSE: {:.4f}, Valid Loss: {:.4f}, Valid MAE: {:.4f}, Valid MAPE: {:.4f}, Valid RMSE: {:.4f}, Training Time: {:.4f}/epoch' print(log.format(i, mtrain_loss, mtrain_mae, mtrain_mape, mtrain_rmse, mvalid_loss, mvalid_mae, mvalid_mape, mvalid_rmse, (t2 - t1)), flush=True) torch.save( engine.model.state_dict(), params_path + "/" + args.model + "_epoch_" + str(i) + "_" + str(round(mvalid_loss, 2)) + ".pth") print("Average Training Time: {:.4f} secs/epoch".format( np.mean(train_time))) print("Average Inference Time: {:.4f} secs".format(np.mean(val_time))) #testing bestid = np.argmin(his_loss) engine.model.load_state_dict( torch.load(params_path + "/" + args.model + "_epoch_" + str(bestid + 1) + "_" + str(round(his_loss[bestid], 2)) + ".pth")) engine.model.eval() outputs = [] realy = torch.Tensor(dataloader['y_test']).to(device) realy = realy.transpose(1, 3)[:, 0, :, :] #print(realy.shape) for iter, (x, y, x_cluster, y_cluster) in enumerate( dataloader['test_loader_cluster'].get_iterator()): testx = torch.Tensor(x).to(device) testx = testx.transpose(1, 3) testx_cluster = torch.Tensor(x_cluster).to(device) testx_cluster = testx_cluster.transpose(1, 3) with torch.no_grad(): preds, _, _ = engine.model(testx, testx_cluster) preds = preds.transpose(1, 3) outputs.append(preds.squeeze()) for iter, (x, y, x_cluster, y_cluster) in enumerate( dataloader['test_loader_cluster'].get_iterator()): testx = torch.Tensor(x).to(device) testx = testx.transpose(1, 3) testx_cluster = torch.Tensor(x_cluster).to(device) testx_cluster = testx_cluster.transpose(1, 3) with torch.no_grad(): _, spatial_at, parameter_adj = engine.model(testx, testx_cluster) break yhat = torch.cat(outputs, dim=0) yhat = yhat[:realy.size(0), ...] #print(yhat.shape) print("Training finished") print("The valid loss on best model is", str(round(his_loss[bestid], 4))) amae = [] amape = [] armse = [] prediction = yhat for i in range(12): pred = prediction[:, :, i] #pred = scaler.inverse_transform(yhat[:,:,i]) #prediction.append(pred) real = realy[:, :, i] metrics = util.metric(pred, real) log = 'Evaluate best model on test data for horizon {:d}, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}' print(log.format(i + 1, metrics[0], metrics[1], metrics[2])) amae.append(metrics[0]) amape.append(metrics[1]) armse.append(metrics[2]) log = 'On average over 12 horizons, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}' print(log.format(np.mean(amae), np.mean(amape), np.mean(armse))) torch.save( engine.model.state_dict(), params_path + "/" + args.model + "_exp" + str(args.expid) + "_best_" + str(round(his_loss[bestid], 2)) + ".pth") prediction_path = params_path + "/" + args.model + "_prediction_results" ground_truth = realy.cpu().detach().numpy() prediction = prediction.cpu().detach().numpy() spatial_at = spatial_at.cpu().detach().numpy() parameter_adj = parameter_adj.cpu().detach().numpy() np.savez_compressed(os.path.normpath(prediction_path), prediction=prediction, spatial_at=spatial_at, parameter_adj=parameter_adj, ground_truth=ground_truth)
def busy(agi): util.metric(agi, 'friction-busy') agi.appexec('busy')
def delay_5(agi): util.metric(agi, 'delay-5') agi.appexec('wait', 5)
def delay_10(agi): util.metric(agi, 'friction-delay-10') agi.appexec('wait', 5) agi.appexec('MusicOnHold', ',5')
def delay_5(agi): util.metric(agi, 'friction-delay-5') agi.appexec('wait', 5)
def gh_linkscan(bot, url): try: if not re.match("http(s)?://github.com", url): bot._debug("I don't know what %s is..." % url) return None gh = gh_inst(bot) if isinstance(gh, basestring): bot._debug("Error: %s" % gh) return gh r_repo = "^https?://github.com/([A-Za-z0-9-]+)/([A-Za-z0-9-\.]+)" r_commit = "^https?://github.com/[A-Za-z0-9-]+/[A-Za-z0-9-\.]+/commit/([A-Za-z0-9]+)" r_blob = "^https?://github.com/[A-Za-z0-9-]+/[A-Za-z0-9-\.]+/blob/([A-Za-z0-9]+)/(.*)" r_tree = "^https?://github.com/[A-Za-z0-9-]+/[A-Za-z0-9-\.]+/tree/([A-Za-z0-9]+)/(.*)" r_issue = "^https?://github.com/[A-Za-z0-9-]+/[A-Za-z0-9-\.]+/(issues|pull)/(\d+)" r = re.match(r_repo, url) if not r: return None repo = "%s/%s" % r.group(1, 2) ghrepo = gh.get_repo(repo) bot._debug("Repo: %s" % repo) commit = re.match(r_commit, url) blob = re.match(r_blob, url) tree = re.match(r_tree, url) issue = re.match(r_issue, url) if commit: bot._debug("Commit SHA: %s" % commit.group(1)) commit = ghrepo.get_commit(commit.group(1)) fmt = "GitHub: \x02%s\x0f commit \x02%s\x0f: %s [/%s] [\x033+%s\x0f \x035-%s\x0f]" % (repo, commit.sha[:8], commit.commit.message, commit.author.login, util.metric(commit.stats.additions), util.metric(commit.stats.deletions)) return fmt.encode('utf-8') elif blob: bot._debug("Blob: [%s] %s" % blob.group(1, 2)) ref = blob.group(1) blob = ghrepo.get_contents(path=blob.group(2), ref=ref) fmt = "GitHub: \x02%s\x0f file \x02%s\x0f [%s, branch %s]" % (repo, blob.name, util.metric(blob.size), ref) return fmt.encode('utf-8') elif tree: bot._debug("Tree: [%s] %s" % tree.group(1, 2)) ref, path = tree.group(1, 2) tree = ghrepo.get_dir_contents(path=path, ref=ref) fmt = "GitHub: \x02%s\x0f dir \x02%s\x0f [%s files, branch %s]" % (repo, path, util.metric(len(tree)), ref) return fmt.encode('utf-8') elif issue: id = issue.group(2) bot._debug("Issue ID: #%s" % id) issue = ghrepo.get_issue(int(id)) assigned_to = issue.assignee.login if issue.assignee else 'no one' if issue.state == "open": fmt = "GitHub: \x02%s\x0f issue \x02#%s\x0f: %s [by %s, %s assigned, created %s, updated %s]" % (repo, id, issue.title, issue.user.login, assigned_to, util.pretty_date(issue.created_at), util.pretty_date(issue.updated_at)) else: fmt = "GitHub: \x02%s\x0f issue \x02#%s\x0f: %s [by %s, \x035closed\x0f by %s %s]" % (repo, id, issue.title, issue.user.login, issue.closed_by.login, util.pretty_date(issue.closed_at)) return fmt.encode('utf-8') else: forks = str(ghrepo.forks) watchers = str(ghrepo.watchers) fmt = "GitHub: \x02%s\x0f [%sf %sw] last updated %s" % (repo, forks, watchers, util.pretty_date(ghrepo.pushed_at)) return fmt.encode('utf-8') except: exc_type, exc_value, exc_traceback = sys.exc_info() traceback.print_exception(exc_type, exc_value, exc_traceback, limit=2, file=sys.stdout) raise
sm = SMOTE(random_state=1) X_train_res, y_train_res = sm.fit_resample(X_train, y_train) # Scaling the the training set scaler = StandardScaler() X_scaled = scaler.fit_transform(X_train_res) # Fit the data to the model model = SVC_Classification() model.fit(X_scaled, y_train_res) # Save the fitted model with open("models/svc_model.pkl", "wb") as m: pickle.dump(model, m) # Save the fitted scaler with open("models/svc_scaler.pkl", "wb") as s: pickle.dump(scaler, s) with open("models/svc_model.pkl", "rb") as m: model = pickle.load(m) with open("models/svc_scaler.pkl", "rb") as s: scaler = pickle.load(s) X_test_scaled = scaler.transform(X_test) y_pred = model.predict_label(X_test_scaled) precision, recall, accuracy, matrix = metric(y_test, y_pred) print(matrix) print("Recall: {}".format(round(recall, 2))) print("Precision: {}".format(round(precision, 2)))
def main(): # set seed torch.manual_seed(args.seed) np.random.seed(args.seed) # load data device = torch.device(args.device) sensor_ids, sensor_id_to_ind, adj_mx = util.load_adj( args.adjdata, args.adjtype) # suffix = '_filtered_we' # _filtered_we, _filtered_ew eR_seq_size = 24 # 24 error_size = 6 dataloader = util.load_dataset(args.data, args.batch_size, args.batch_size, args.batch_size, eRec=args.eRec, eR_seq_size=eR_seq_size, suffix=args.suffix) scaler = dataloader['scaler'] if args.retrain: dl_train = util.load_dataset(args.data, args.batch_size, args.batch_size, args.batch_size, eRec=args.eRec, eR_seq_size=eR_seq_size, suffix=args.suffix_train) scaler = dl_train['scaler'] blocks = int(dataloader[f'x_train{args.suffix}'].shape[-3] / 3) # Every block reduce the input sequence size by 3. print(f'blocks = {blocks}') supports = [torch.tensor(i).to(device) for i in adj_mx] print(args) if args.randomadj: adjinit = None else: adjinit = supports[0] if args.aptonly: supports = None engine = trainer(scaler, args.in_dim, args.seq_length, args.num_nodes, args.nhid, args.dropout, args.learning_rate, args.weight_decay, device, supports, args.gcn_bool, args.addaptadj, adjinit, blocks, eRec=args.eRec, retrain=args.retrain, checkpoint=args.checkpoint, error_size=error_size) if args.retrain: dataloader['val_loader'] = dataloader['train_loader'] print("start training...", flush=True) his_loss = [] val_time = [] train_time = [] for i in range(1, args.epochs + 1): #if i % 10 == 0: #lr = max(0.000002,args.learning_rate * (0.1 ** (i // 10))) #for g in engine.optimizer.param_groups: #g['lr'] = lr train_loss = [] train_mape = [] train_rmse = [] t1 = time.time() dataloader['train_loader'].shuffle() for iter, (x, y) in enumerate(dataloader['train_loader'].get_iterator()): trainx = torch.Tensor(x).to(device) trainy = torch.Tensor(y).to(device) if args.eRec: trainx = trainx.transpose(0, 1) trainy = trainy.transpose(0, 1) trainx = trainx.transpose(-3, -1) trainy = trainy.transpose(-3, -1) # print(f'trainx.shape = {trainx.shape}') # print(f'trainy.shape = {trainy.shape}') # print(f'trainy.shape final = {trainy[:,0,:,:].shape}') if args.eRec: metrics = engine.train(trainx, trainy[:, :, 0, :, :]) else: metrics = engine.train(trainx, trainy[:, 0, :, :]) train_loss.append(metrics[0]) train_mape.append(metrics[1]) train_rmse.append(metrics[2]) if iter % args.print_every == 0: log = 'Iter: {:03d}, Train Loss: {:.4f}, Train MAPE: {:.4f}, Train RMSE: {:.4f}' print(log.format(iter, train_loss[-1], train_mape[-1], train_rmse[-1]), flush=True) t2 = time.time() train_time.append(t2 - t1) #validation valid_loss = [] valid_mape = [] valid_rmse = [] s1 = time.time() for iter, (x, y) in enumerate(dataloader['val_loader'].get_iterator()): testx = torch.Tensor(x).to(device) testy = torch.Tensor(y).to(device) if args.eRec: testx = testx.transpose(0, 1) testy = testy.transpose(0, 1) testx = testx.transpose(-3, -1) testy = testy.transpose(-3, -1) if args.eRec: metrics = engine.eval(testx, testy[:, :, 0, :, :]) else: metrics = engine.eval(testx, testy[:, 0, :, :]) valid_loss.append(metrics[0]) valid_mape.append(metrics[1]) valid_rmse.append(metrics[2]) s2 = time.time() log = 'Epoch: {:03d}, Inference Time: {:.4f} secs' print(log.format(i, (s2 - s1))) val_time.append(s2 - s1) mtrain_loss = np.mean(train_loss) mtrain_mape = np.mean(train_mape) mtrain_rmse = np.mean(train_rmse) mvalid_loss = np.mean(valid_loss) mvalid_mape = np.mean(valid_mape) mvalid_rmse = np.mean(valid_rmse) his_loss.append(mvalid_loss) log = 'Epoch: {:03d}, Train Loss: {:.4f}, Train MAPE: {:.4f}, Train RMSE: {:.4f}, Valid Loss: {:.4f}, Valid MAPE: {:.4f}, Valid RMSE: {:.4f}, Training Time: {:.4f}/epoch' print(log.format(i, mtrain_loss, mtrain_mape, mtrain_rmse, mvalid_loss, mvalid_mape, mvalid_rmse, (t2 - t1)), flush=True) torch.save( engine.model.state_dict(), args.save + "_epoch_" + str(i) + "_" + str(round(mvalid_loss, 2)) + ".pth") print("Average Training Time: {:.4f} secs/epoch".format( np.mean(train_time))) print("Average Inference Time: {:.4f} secs".format(np.mean(val_time))) #testing bestid = 82 # 24 hay que sumarle 1 para obtener el ID del modelo bestid = np.argmin(his_loss) engine.model.load_state_dict( torch.load(args.save + "_epoch_" + str(bestid + 1) + "_" + str(round(his_loss[bestid], 2)) + ".pth")) # engine.model.load_state_dict(torch.load(args.save + f"_id_25_2.6_best_model.pth")) # engine.model.load_state_dict(torch.load(args.save + f"_exp1_best_2.6.pth")) #torch.save(engine.model.state_dict(), args.save + f"_id_{bestid+1}_best_model.pth") print(f'best_id = {bestid+1}') outputs = [] realy = torch.Tensor(dataloader[f'y_test{args.suffix}']).to(device) #print(f'realy: {realy.shape}') if args.eRec: realy = realy.transpose(0, 1) realy = realy.transpose(-3, -1)[-1, :, 0, :, :] #print(f'realy2: {realy.shape}') else: realy = realy.transpose(-3, -1)[:, 0, :, :] #print(f'realy2: {realy.shape}') criterion = nn.MSELoss(reduction='none') # L2 Norm criterion2 = nn.L1Loss(reduction='none') loss_mse_list = [] loss_mae_list = [] for iter, (x, y) in enumerate(dataloader['test_loader'].get_iterator()): testx = torch.Tensor(x).to(device) testy = torch.Tensor(y).to(device) if args.eRec: testx = testx.transpose(0, 1) testy = testy.transpose(0, 1) testx = testx.transpose(-3, -1) testy = testy.transpose(-3, -1) with torch.no_grad(): if args.eRec: preds = engine.model(testx, testy[:, :, 0:1, :, :], scaler).transpose(1, 3) else: preds = engine.model(testx).transpose(1, 3) #print(f'preds: {scaler.inverse_transform(torch.squeeze(preds.transpose(-3, -1))).shape}') #print(f'testy: {torch.squeeze(testy[:, 0:1, :, :].transpose(-3, -1)).shape}') if args.eRec: loss_mse = criterion( scaler.inverse_transform(torch.squeeze(preds.transpose(-3, -1))), torch.squeeze(testy[-1, :, 0:1, :, :].transpose(-3, -1))) loss_mae = criterion2( scaler.inverse_transform(torch.squeeze(preds.transpose(-3, -1))), torch.squeeze(testy[-1, :, 0:1, :, :].transpose(-3, -1))) else: loss_mse = criterion( scaler.inverse_transform(torch.squeeze(preds.transpose(-3, -1))), torch.squeeze(testy[:, 0:1, :, :].transpose(-3, -1))) loss_mae = criterion2( scaler.inverse_transform(torch.squeeze(preds.transpose(-3, -1))), torch.squeeze(testy[:, 0:1, :, :].transpose(-3, -1))) loss_mse_list.append(loss_mse) loss_mae_list.append(loss_mae) outputs.append(preds.squeeze()) loss_mse_list.pop(-1) loss_mae_list.pop(-1) loss_mse = torch.cat(loss_mse_list, 0) loss_mae = torch.cat(loss_mae_list, 0) #loss_mse = torch.squeeze(loss_mse).cpu() #loss_mae = torch.squeeze(loss_mae).cpu() loss_mse = loss_mse.cpu() loss_mae = loss_mae.cpu() print(f'loss_mae: {loss_mae.shape}') print(f'loss_mse: {loss_mae.shape}') res_folder = 'results/' original_stdout = sys.stdout with open(res_folder + f'loss_evaluation.txt', 'w') as filehandle: sys.stdout = filehandle # Change the standard output to the file we created. count_parameters(engine.model) # loss_mae.shape --> (batch_size, seq_size, n_detect) print(' 1. ***********') print_loss('MSE', loss_mse) print(' 2. ***********') print_loss('MAE', loss_mae) print(' 3. ***********') print_loss_sensor('MAE', loss_mae) print(' 5. ***********') print_loss_seq('MAE', loss_mae) print(' 6. ***********') print_loss_sensor_seq('MAE', loss_mae) sys.stdout = original_stdout # Reset the standard output to its original value with open(res_folder + f'loss_evaluation.txt', 'r') as filehandle: print(filehandle.read()) yhat = torch.cat(outputs, dim=0) #print(f'yhat: {yhat.shape}') yhat = yhat[:realy.size(0), ...] #print(f'yhat2: {yhat.shape}') print("Training finished") #print("The valid loss on best model is", str(round(his_loss[bestid],4))) amae = [] amape = [] armse = [] for i in range(args.seq_length): pred = scaler.inverse_transform(yhat[:, :, i]) real = realy[:, :, i] metrics = util.metric(pred, real) log = 'Evaluate best model on test data for horizon {:d}, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}' print(log.format(i + 1, metrics[0], metrics[1], metrics[2])) amae.append(metrics[0]) amape.append(metrics[1]) armse.append(metrics[2]) log = 'On average over {:.4f} horizons, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}' print( log.format(args.seq_length, np.mean(amae), np.mean(amape), np.mean(armse))) torch.save( engine.model.state_dict(), args.save + "_exp" + str(args.expid) + "_best_" + str(round(np.min(his_loss), 2)) + ".pth")
for step, input in enumerate(data_eval): pred, pred_prob, target = model(input) y_pred[step, :] = pred y_pred_prob[step, :] = pred_prob y_gt[step, :] = target llprint('\rEval--Epoch: %d, Step: %d/%d' % (epoch, step, len(data_eval))) end_time = time.time() elapsed_time = (end_time - start_time) / 60 llprint( '\n\tEpoch: %d, Loss: %.4f, One Epoch Time: %.2fm, Appro Left Time: %.2fm\n' % (epoch, np.mean(loss_record), elapsed_time, elapsed_time * (EPOCH - epoch - 1))) js, auc, p_1, p_3, p_5, f1, auprc = metric(y_gt, y_pred, y_pred_prob) llprint( '\tJS: %.4f, AUC: %.4f, P1: %.4f, P3: %.4f, P5: %.4f, F1: %.4f, AUPRC: %.4F\n' % (js, auc, p_1, p_3, p_5, f1, auprc)) torch.save( model.state_dict(), open( os.path.join( 'saved', model_name, 'Epoch_%d_Loss_%.4f_P1_%.4f.model' % (epoch, np.mean(loss_record), p_1)), 'wb')) print('') # test torch.save(model.state_dict(), open(os.path.join('saved', model_name, 'final.model'), 'wb'))
def main(): # set seed torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) np.random.seed(args.seed) # load data device = f'cuda:{args.device}' if torch.cuda.is_available() else 'cpu' adj_mx = util.load_adj(adj_path, args.adjtype) dataloader = util.load_dataset(outflow_path, args.batch_size, args.batch_size, args.batch_size) scaler = dataloader['scaler'] supports = [torch.tensor(i).to(device) for i in adj_mx] if args.randomadj: adjinit = None else: adjinit = supports[0] if args.aptonly: supports = None engine = trainer(scaler, args.in_dim, args.seq_length, num_nodes, args.nhid, args.dropout, args.learning_rate, args.weight_decay, device, supports, args.gcn_bool, args.addaptadj, adjinit) logger.write("start training...") his_loss = [] val_time = [] train_time = [] for i in range(1, args.epochs + 1): # learning rate schedule if i % 10 == 0: lr = max(0.000002, args.learning_rate * (0.9**(i // 10))) for g in engine.optimizer.param_groups: g['lr'] = lr # train train_mae = [] train_rmse = [] train_mape = [] t1 = time.time() dataloader['train_loader'].shuffle() for iter, (x, y) in enumerate(dataloader['train_loader'].get_iterator()): trainx = torch.Tensor(x).to(device) trainx = trainx.transpose(1, 3) trainy = torch.Tensor(y).to(device) trainy = trainy.transpose(1, 3) # NOTE: B, T, V, F, F=2, but we noly need speed for label: y[:, 0, ...] metrics = engine.train(trainx, trainy[:, 0, :, :]) train_mae.append(metrics[0]) train_rmse.append(metrics[1]) train_mape.append(metrics[2]) # log results of training set. mtrain_mae = np.mean(train_mae) mtrain_rmse = np.mean(train_rmse) mtrain_mape = np.mean(train_mape) * 100 train_writer.add_scalar('train/mae', mtrain_mae, i) train_writer.add_scalar('train/rmse', mtrain_rmse, i) train_writer.add_scalar('train/mape', mtrain_mape, i) # validation with torch.no_grad(): valid_mae = [] valid_mape = [] valid_rmse = [] s1 = time.time() for _, (x, y) in enumerate(dataloader['val_loader'].get_iterator()): testx = torch.Tensor(x).to(device) testx = testx.transpose(1, 3) testy = torch.Tensor(y).to(device) testy = testy.transpose(1, 3) metrics = engine.eval(testx, testy[:, 0, :, :]) valid_mae.append(metrics[0]) valid_rmse.append(metrics[1]) valid_mape.append(metrics[2]) # log results of validation set. s2 = time.time() val_time.append(s2 - s1) mvalid_mae = np.mean(valid_mae) mvalid_mape = np.mean(valid_mape) * 100 mvalid_rmse = np.mean(valid_rmse) his_loss.append(mvalid_mae) val_writer.add_scalar('val/mae', mvalid_mae, i) val_writer.add_scalar('val/rmse', mvalid_rmse, i) val_writer.add_scalar('val/mape', mvalid_mape, i) t2 = time.time() train_time.append(t2 - t1) if i % args.print_every == 0: logger.write( f'Epoch: {i:03d}, MAE: {mtrain_mae:.2f}, RMSE: {mtrain_rmse:.2f}, MAPE: {mtrain_mape:.2f}, Valid MAE: {mvalid_mae:.2f}, RMSE: {mvalid_rmse:.2f}, MAPE: {mvalid_mape:.2f}' ) torch.save( engine.model.state_dict(), save_path + "_epoch_" + str(i) + "_" + str(round(mvalid_mae, 2)) + ".pth") logger.write("Average Training Time: {:.4f} secs/epoch".format( np.mean(train_time))) # logger.write("Average Inference Time: {:.4f} secs".format(np.mean(val_time))) bestid = np.argmin(his_loss) engine.model.load_state_dict( torch.load(save_path + "_epoch_" + str(bestid + 1) + "_" + str(round(his_loss[bestid], 2)) + ".pth")) logger.write("Training finished") logger.write( f"The valid loss on best model is {str(round(his_loss[bestid],4))}") # test outputs = [] realy = torch.Tensor(dataloader['y_test']).to(device) realy = realy.transpose(1, 3)[:, 0, :, :] with torch.no_grad(): t1 = time.time() for _, (x, y) in enumerate(dataloader['test_loader'].get_iterator()): testx = torch.Tensor(x).to(device) testx = testx.transpose(1, 3) preds = engine.model(testx).transpose(1, 3) outputs.append(preds.squeeze()) t2 = time.time() logger.write(f'Inference time: {t2-t1:.4f}') yhat = torch.cat(outputs, dim=0) yhat = yhat[:realy.size(0), ...] # calculate metrics and save predictions preds = [] reals = [] logger.write('Step i, Test MAE, Test RMSE, Test MAPE') for i in range(args.seq_length): # prediction of step i pred = scaler.inverse_transform(yhat[:, :, i]) real = realy[:, :, i] metrics = util.metric(pred.cpu().detach().numpy(), real.cpu().detach().numpy()) logger.write( f'{metrics[0]:.2f}, {metrics[1]:.2f}, {metrics[2]*100:.2f}') preds.append(pred.tolist()) reals.append(real.tolist()) reals = np.array(reals) preds = np.array(preds) np.save(f'test_{args.city}_{args.tinterval}.npy', np.array(reals)) np.save(f'test_{args.city}_{args.tinterval}.npy', np.array(preds)) torch.save( engine.model.state_dict(), save_path + "_exp" + str(args.expid) + "_best_" + str(round(his_loss[bestid], 2)) + ".pth")
def main(): device = torch.device(args.device) _, _, adj_mx = util.load_adj(args.adjdata, args.adjtype) supports = [torch.tensor(i).to(device) for i in adj_mx] if args.randomadj: adjinit = None else: adjinit = supports[0] if args.aptonly: supports = None model = gwnet(device, args.num_nodes, args.dropout, supports=supports, gcn_bool=args.gcn_bool, addaptadj=args.addaptadj, aptinit=adjinit) model.to(device) model.load_state_dict(torch.load(args.checkpoint)) model.eval() print('model load successfully') dataloader = util.load_dataset(args.data, args.batch_size, args.batch_size, args.batch_size) scaler = dataloader['scaler'] outputs = [] realy = torch.Tensor(dataloader['y_test']).to(device) realy = realy.transpose(1,3)[:,0,:,:] for iter, (x, y) in enumerate(dataloader['test_loader'].get_iterator()): testx = torch.Tensor(x).to(device) testx = testx.transpose(1,3) with torch.no_grad(): preds = model(testx).transpose(1,3) outputs.append(preds.squeeze()) yhat = torch.cat(outputs,dim=0) yhat = yhat[:realy.size(0),...] amae = [] amape = [] armse = [] for i in range(12): pred = scaler.inverse_transform(yhat[:,:,i]) real = realy[:,:,i] metrics = util.metric(pred,real) log = 'Evaluate best model on test data for horizon {:d}, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}' print(log.format(i+1, metrics[0], metrics[1], metrics[2])) amae.append(metrics[0]) amape.append(metrics[1]) armse.append(metrics[2]) log = 'On average over 12 horizons, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}' print(log.format(np.mean(amae),np.mean(amape),np.mean(armse))) idx_list = list(range(1, 13)) + ['average'] amae.append(np.mean(amae)) amape.append(np.mean(amape)) armse.append(np.mean(armse)) df = pd.DataFrame(list(zip(idx_list, amae, amape, armse)), columns=['horizon', 'MAE', 'MAPE', 'RMSE']) if args.savehorizon == 'True': excel_dir = 'result.xlsx' sheet_name= args.sheetname if (os.path.isfile(excel_dir)): # append a new sheet book = load_workbook(excel_dir) with pd.ExcelWriter(excel_dir, engine='openpyxl') as writer: writer.book = book writer.sheets = dict((ws.title, ws) for ws in book.worksheets) df.to_excel(writer, sheet_name=sheet_name, index=False) writer.save() writer.close() else: df.to_excel(excel_dir, sheet_name=sheet_name, index=False) if args.plotheatmap == "True": adp = F.softmax(F.relu(torch.mm(model.nodevec1, model.nodevec2)), dim=1) device = torch.device('cpu') adp.to(device) adp = adp.cpu().detach().numpy() adp = adp*(1/np.max(adp)) df = pd.DataFrame(adp) sns.heatmap(df, cmap="RdYlBu") plt.savefig("./emb"+ '.pdf') # print(realy.shape) #torch.Size([6850, 207, 12]) (:, #node, window) y12 = realy[:,99,11].cpu().detach().numpy() yhat12 = scaler.inverse_transform(yhat[:,99,11]).cpu().detach().numpy() y3 = realy[:,99,2].cpu().detach().numpy() yhat3 = scaler.inverse_transform(yhat[:,99,2]).cpu().detach().numpy() df2 = pd.DataFrame({'real12':y12,'pred12':yhat12, 'real3': y3, 'pred3':yhat3}) df2.to_csv('./wave.csv',index=False)
model_type = 'XGBoost' if train_on_subset_data: r2, _ = train_on_different_classes(subset_type, equal=False) r2.insert(0, model_type) csv_writer.writerow(r2) if train_on_whole_data: x_train, x_test, y_train, y_test = transform_data( x_data=train_data, y_data=label, test_size=0.1, random_state=4) kappa_model = KappaModel(x_train, x_test, y_train, y_test) kappa_model.train_model(model, epochs=epochs) predict_train = kappa_model.predict(model, 'train') predict_test = kappa_model.predict(model, 'test') r2_train, mae_log_train, rmse_train = metric( y_train, predict_train) r2_test, mae_log_test, rmse_test = metric(y_cal=y_test, y_pred=predict_test) MAEs_train = mae(np.exp(y_train), np.exp(predict_train)) MAEs_test = mae(np.exp(y_test), np.exp(predict_test)) print(mae_log_test, r2_test) metric_list = [ MAEs_train, MAEs_test, r2_train, r2_test, mae_log_train, mae_log_test, rmse_train, rmse_test ] metric_matrix.append(metric_list) if train_on_whole_data: metric_matrix.insert(0, [ 'MAEs of train data', 'MAEs of test data', 'R2 of train data',