return result def parse_args(): """ :returns: arguments """ import argparse parser = argparse.ArgumentParser() parser.add_argument('image_dir_path', help='Path to directory that contains images') parser.add_argument('chunk_count', help='Number of chunks to split input paths into', type=int) parser.add_argument('process_chunk', help='Chunk that will be processed', type=int) parser.add_argument('output_name', help='Custom name added to the output') return parser.parse_args() if __name__ == '__main__': args = parse_args() image_dir_path = args.image_dir_path chunk_count = args.chunk_count process_chunk = args.process_chunk output_name = args.output_name debug_output_path = './output/detection_debug' detections = detect_traffic_signs(image_dir_path, chunk_count=chunk_count, process_chunk=process_chunk, debug_output_path=debug_output_path) detections_output_path = './detections_{}_chunk_{}_of_{}.pickle'.format(output_name, process_chunk, chunk_count) util.pickle_save(detections_output_path, detections)
import glob import numpy as np from os.path import join, basename import util def get_pickle_files(dir_path): return sorted(glob.glob(join(dir_path, '*.pickle'))) DATASET_NAME = '10_right' DIR_PATH = join('./output/scores/', DATASET_NAME) OUTPUT_PATH = join('./output/scores/merged', DATASET_NAME + '.pickle') pickle_files = get_pickle_files(DIR_PATH) result = {} for pickle_file in pickle_files: image_name = basename(pickle_file)[:-len('.pickle')] scores = util.pickle_load(pickle_file) result[image_name] = scores #print(result[list(result.keys())[0]].shape) util.pickle_save(OUTPUT_PATH, result)
#!/usr/bin/python3 # -*- coding: utf-8 -*- from util import pickle_save from database import ParkrunDB #norwich_db = ParkrunDB("norwich", 440, 441) #norwich_db.update() #pickle_save(norwich_db, 'norwich_parkrun_2019.db') colneylane_db = ParkrunDB("colneylane", 56, 57) colneylane_db.update() pickle_save(colneylane_db, 'colneylane_parkrun_2019.db')
def gettripIds(index=0): tripIDs = [] # For each route, for routeID, routeTrips in weekdayTrips.groupby('route_id'): # Pick a trip tripIDs.append(routeTrips.trip_id.values[index]) return tripIDs if __name__ == "__main__": calendar = read_csv('subwaydata/google_transit/calendar.txt') routes = read_csv('subwaydata/google_transit/routes.txt') trips = read_csv('subwaydata/google_transit/trips.txt') times = read_csv('subwaydata/google_transit/stop_times.txt') stops = read_csv('subwaydata/google_transit/stops.txt') weekdayServiceIDs = filter(lambda x: x.endswith('WKD'), calendar.service_id) routeNameByID = {x['route_id']: x['route_long_name'] for index, x in routes.iterrows()} weekdayTrips = trips[trips.service_id.isin(weekdayServiceIDs)] print(len(weekdayTrips)) weekdayTimes = times[times.trip_id.isin(weekdayTrips.trip_id.unique())] tripIDs = gettripIds() graph = make_graph(tripIDs) import util util.pickle_save(graph, 'subwaydata/NYCsubway_network_graph.pkl')
totalzipcodes = 0 missing = 0 for neighborhood in neighborhooddict.keys(): for zipcode in neighborhooddict[neighborhood]: totalzipcodes += 1 try: len(fulldata) tmpdata = getData(zipcode) if tmpdata is None: missing += 1 continue else: fulldata = pd.concat([fulldata, tmpdata], axis=1) filename = 'data/%s_%s.pkl' % (neighborhood, zipcode) util.pickle_save(tmpdata, filename) except NameError: # hack to instantiate first DataFrame fulldata = getData(zipcode) filename = 'data/%s_%s.pkl' % (neighborhood, zipcode) util.pickle_save(fulldata, filename) print('Missing %d zipcodes of %d total' % (missing, totalzipcodes)) for zipcode in fulldata.keys(): plot_date(fulldata[zipcode].index, fulldata[zipcode], alpha=0.7, fmt='.') plot_date(fulldata.index, fulldata.mean(axis=1))