"svm_big_base_clement_confusion_matrix") # %% base_cv_results = cross_validate(base_model, train_X, train_Y, cv=KFold(5)) util.plot_cv_score(base_cv_results, title="svm_big_base_clement_cv_score_bar") # %% util.plot_learning_curve(base_model, "svm_big_base_clement_learning_curve", train_X, train_Y, cv=KFold(5), n_jobs=4) # %% util.plot_word_cloud(base_model, "svm_big_base_clement_word_cloud") # %% [markdown] # <h2> Adding TFIDF </h2> # %% tfidf_model = svm.TFIDFSVMModel(ngram=(1, 2)) tfidf_model.fit(train_X, train_Y) # %% pred_Y = tfidf_model.predict(test_X) util.print_accuracy_measures(test_Y, pred_Y, label="svm_big_tfidf_clement") # %% util.visualize_confusion_matrix(tfidf_model, test_X, test_Y, "svm_big_tfidf_clement_confusion_matrix")
# %% base_cv_results = cross_validate(base_model, train_X, train_Y, cv=KFold(5)) util.plot_cv_score(base_cv_results, title="naive_bayes_uni_base_clement_cv_score_bar") # %% util.plot_learning_curve(base_model, "naive_bayes_uni_base_clement_learning_curve", train_X, train_Y, cv=KFold(5), n_jobs=4) # %% util.plot_word_cloud(base_model, "naive_bayes_uni_base_clement_word_cloud") # %% [markdown] # <h2> Adding TFIDF </h2> # %% tfidf_model = nb.TFIDFNaiveBayesModel() tfidf_model.fit(train_X, train_Y) # %% pred_Y = tfidf_model.predict(test_X) util.print_accuracy_measures(test_Y, pred_Y, label="naive_bayes_uni_tfidf_clement") # %%
"log_reg_big_base_comp_confusion_matrix") # %% base_cv_results = cross_validate(base_model, train_X, train_Y, cv=KFold(5)) util.plot_cv_score(base_cv_results, title="log_reg_big_base_comp_cv_score_bar") # %% util.plot_learning_curve(base_model, "log_reg_big_base_comp_learning_curve", train_X, train_Y, cv=KFold(5), n_jobs=4) # %% util.plot_word_cloud(base_model, "log_reg_big_base_comp_word_cloud") # %% [markdown] # <h2> Adding TFIDF </h2> # %% tfidf_model = lr.TFIDFLogRegModel(ngram=(1, 2)) tfidf_model.fit(train_X, train_Y) # %% pred_Y = tfidf_model.predict(test_X) util.print_accuracy_measures(test_Y, pred_Y, label="log_reg_big_tfidf_comp") # %% util.visualize_confusion_matrix(tfidf_model, test_X, test_Y, "log_reg_big_tfidf_comp_confusion_matrix")
"svm_uni_base_comp_confusion_matrix") # %% base_cv_results = cross_validate(base_model, train_X, train_Y, cv=KFold(5)) util.plot_cv_score(base_cv_results, title="svm_uni_base_comp_cv_score_bar") # %% util.plot_learning_curve(base_model, "svm_uni_base_comp_learning_curve", train_X, train_Y, cv=KFold(5), n_jobs=4) # %% util.plot_word_cloud(base_model, "svm_uni_base_comp_word_cloud") # %% [markdown] # <h2> Adding TFIDF </h2> # %% tfidf_model = svm.TFIDFSVMModel() tfidf_model.fit(train_X, train_Y) # %% pred_Y = tfidf_model.predict(test_X) util.print_accuracy_measures(test_Y, pred_Y, label="svm_uni_tfidf_comp") # %% util.visualize_confusion_matrix(tfidf_model, test_X, test_Y, "svm_uni_tfidf_comp_confusion_matrix")
# %% [markdown] # <h2> Adding TFIDF </h2> # %% tfidf_model = lr.TFIDFLogRegModel() tfidf_model.fit(train_X, train_Y) # %% pred_Y = tfidf_model.predict(test_X) util.print_accuracy_measures(test_Y, pred_Y, label="log_reg_uni_tfidf_clement") # %% util.visualize_confusion_matrix(tfidf_model, test_X, test_Y, "log_reg_uni_tfidf_clement_confusion_matrix") # %% tfidf_cv_results = cross_validate(tfidf_model, train_X, train_Y, cv=KFold(5)) util.plot_cv_score(tfidf_cv_results, title="log_reg_uni_tfidf_clement_cv_score_bar") # %% util.plot_learning_curve(tfidf_model, "log_reg_uni_tfidf_clement_learning_curve", train_X, train_Y, cv=KFold(5), n_jobs=4) # %% util.plot_word_cloud(tfidf_model, "log_reg_uni_tfidf_clement_word_cloud")
# %% base_cv_results = cross_validate(base_model, train_X, train_Y, cv=KFold(5)) util.plot_cv_score(base_cv_results, title="naive_bayes_big_base_comp_cv_score_bar") # %% util.plot_learning_curve(base_model, "naive_bayes_big_base_comp_learning_curve", train_X, train_Y, cv=KFold(5), n_jobs=4) # %% util.plot_word_cloud(base_model, "naive_bayes_big_base_comp_word_cloud") # %% [markdown] # <h2> Adding TFIDF </h2> # %% tfidf_model = nb.TFIDFNaiveBayesModel(ngram=(1, 2)) tfidf_model.fit(train_X, train_Y) # %% pred_Y = tfidf_model.predict(test_X) util.print_accuracy_measures(test_Y, pred_Y, label="naive_bayes_big_tfidf_comp") # %%