Esempio n. 1
0
def save_local_maps(sessionname, visualize=False):
    print(sessionname)
    session = pynclt.session(sessionname)
    util.makedirs(session.dir)
    istart, imid, iend = get_map_indices(session)
    maps = []
    with progressbar.ProgressBar(max_value=len(iend)) as bar:
        for i in range(len(iend)):
            scans = []
            for idx, val in enumerate(range(istart[i], iend[i])):
                xyz, _ = session.get_velo(val)
                scan = o3.geometry.PointCloud()
                scan.points = o3.utility.Vector3dVector(xyz)
                scans.append(scan)

            T_w_mc = util.project_xy(
                session.T_w_r_odo_velo[imid[i]].dot(T_r_mc))
            T_w_m = T_w_mc.dot(T_mc_m)
            T_m_w = util.invert_ht(T_w_m)
            T_w_r = session.T_w_r_odo_velo[istart[i]:iend[i]]
            T_m_r = np.matmul(T_m_w, T_w_r)

            occupancymap = mapping.occupancymap(scans, T_m_r, mapshape,
                                                mapsize)
            poleparams = poles.detect_poles(occupancymap, mapsize)

            if visualize:
                cloud = o3.geometry.PointCloud()
                for T, scan in zip(T_w_r, scans):
                    s = copy.copy(scan)
                    s.transform(T)
                    cloud.points.extend(s.points)
                mapboundsvis = util.create_wire_box(mapextent, [0.0, 0.0, 1.0])
                mapboundsvis.transform(T_w_m)
                polevis = []
                for j in range(poleparams.shape[0]):
                    x, y, zs, ze, a = poleparams[j, :5]
                    pole = util.create_wire_box([a, a, ze - zs],
                                                color=[1.0, 1.0, 0.0])
                    T_m_p = np.identity(4)
                    T_m_p[:3, 3] = [x - 0.5 * a, y - 0.5 * a, zs]
                    pole.transform(T_w_m.dot(T_m_p))
                    polevis.append(pole)
                o3.visualization.draw_geometries(polevis +
                                                 [cloud, mapboundsvis])

            map = {
                'poleparams': poleparams,
                'T_w_m': T_w_m,
                'istart': istart[i],
                'imid': imid[i],
                'iend': iend[i]
            }
            maps.append(map)
            bar.update(i)
    np.savez(os.path.join(session.dir, get_localmapfile()), maps=maps)
Esempio n. 2
0
def evaluate():
    stats = []
    for sessionname in pynclt.sessions:
        files = [file for file \
            in os.listdir(os.path.join(pynclt.resultdir, sessionname)) \
                if file.startswith(localization_name_start)]
                # if file.startswith(get_locfileprefix())]
        files.sort()
        session = pynclt.session(sessionname)
        cumdist = np.hstack([0.0, np.cumsum(np.linalg.norm(np.diff(
            session.T_w_r_gt[:, :3, 3], axis=0), axis=1))])
        t_eval = scipy.interpolate.interp1d(
            cumdist, session.t_gt)(np.arange(0.0, cumdist[-1], 1.0))
        T_w_r_gt = np.stack([util.project_xy(
                session.get_T_w_r_gt(t).dot(T_r_mc)).dot(T_mc_r) \
                    for t in t_eval])
        T_gt_est = []
        for file in files:
            T_w_r_est = np.load(os.path.join(
                pynclt.resultdir, sessionname, file))['T_w_r_est']
            T_w_r_est_interp = np.empty([len(t_eval), 4, 4])
            iodo = 1
            for ieval in range(len(t_eval)):
                while session.t_relodo[iodo] < t_eval[ieval]:
                    iodo += 1
                T_w_r_est_interp[ieval] = util.interpolate_ht(
                    T_w_r_est[iodo-1:iodo+1], 
                    session.t_relodo[iodo-1:iodo+1], t_eval[ieval])
            T_gt_est.append(
                np.matmul(util.invert_ht(T_w_r_gt), T_w_r_est_interp))
        T_gt_est = np.stack(T_gt_est)
        lonerror = np.mean(np.mean(np.abs(T_gt_est[..., 0, 3]), axis=-1))
        laterror = np.mean(np.mean(np.abs(T_gt_est[..., 1, 3]), axis=-1))
        poserrors = np.linalg.norm(T_gt_est[..., :2, 3], axis=-1)
        poserror = np.mean(np.mean(poserrors, axis=-1))
        posrmse = np.mean(np.sqrt(np.mean(poserrors**2, axis=-1)))
        angerrors = np.degrees(np.abs(
            np.array([util.ht2xyp(T)[:, 2] for T in T_gt_est])))
        angerror = np.mean(np.mean(angerrors, axis=-1))
        angrmse = np.mean(np.sqrt(np.mean(angerrors**2, axis=-1)))
        stats.append({'session': sessionname, 'lonerror': lonerror, 
            'laterror': laterror, 'poserror': poserror, 'posrmse': posrmse,
            'angerror': angerror, 'angrmse': angrmse, 'T_gt_est': T_gt_est})
    np.savez(os.path.join(pynclt.resultdir, get_evalfile()), stats=stats)
    
    mapdata = np.load(os.path.join(pynclt.resultdir, get_globalmapname() + '.npz'))
    print('session \t f\te_pos \trmse_pos \te_ang \te_rmse')
    row = '{session} \t{f} \t{poserror} \t{posrmse} \t{angerror} \t{angrmse}'
    for i, stat in enumerate(stats):
        print(row.format(
            session=stat['session'],
            f=mapdata['mapfactors'][i] * 100.0,
            poserror=stat['poserror'],
            posrmse=stat['posrmse'],
            angerror=stat['angerror'],
            angrmse=stat['angrmse']))
def evaluate(seq):
    sequence = dataset.sequence(seq)
    T_w_velo_gt = np.matmul(sequence.poses, sequence.calib.T_cam0_velo)
    T_w_velo_gt = np.array([util.project_xy(ht) for ht in T_w_velo_gt])
    trajectory_dir = os.path.join(result_dir, '{:03d}'.format(seq),
                                  'trajectory')
    util.makedirs(trajectory_dir)
    mapdata = np.load(os.path.join(seqdir, globalmapfile), allow_pickle=True)
    polemap = mapdata['polemeans']
    # plt.scatter(polemap[:, 0], polemap[:, 1], s=1, c='b')
    # plt.plot(T_w_velo_gt[:, 0, 3], T_w_velo_gt[:, 1, 3], color=(0, 1, 0), label='Ground Truth', linewidth=3.0)
    cumdist = np.hstack([
        0.0,
        np.cumsum(
            np.linalg.norm(np.diff(T_w_velo_gt[:, :2, 3], axis=0), axis=1))
    ])
    timestamps = np.array([arrow.get(timestamp).float_timestamp \
        for timestamp in sequence.timestamps])
    t_eval = scipy.interpolate.interp1d(cumdist, timestamps)(np.arange(
        0.0, cumdist[-1], 1.0))
    n = t_eval.size
    T_w_velo_gt_interp = np.empty([n, 4, 4])
    iodo = 1
    for ieval in range(n):
        while timestamps[iodo] < t_eval[ieval]:
            iodo += 1
        T_w_velo_gt_interp[ieval] = util.interpolate_ht(
            T_w_velo_gt[iodo - 1:iodo + 1], timestamps[iodo - 1:iodo + 1],
            t_eval[ieval])
    files = [file for file in os.listdir(seqdir) \
        if os.path.basename(file).startswith(locfileprefix)]
    poserror = np.full([n, len(files)], np.nan)
    laterror = np.full([n, len(files)], np.nan)
    lonerror = np.full([n, len(files)], np.nan)
    angerror = np.full([n, len(files)], np.nan)
    T_gt_est = np.full([n, 4, 4], np.nan)
    for ifile in range(len(files)):
        T_w_velo_est = np.load(os.path.join(seqdir, files[ifile]),
                               allow_pickle=True)['T_w_velo_est']
        plt.clf()
        plt.plot(T_w_velo_gt[:, 0, 3],
                 T_w_velo_gt[:, 1, 3],
                 color=(0, 1, 0),
                 label='Ground Truth',
                 linewidth=3.0)
        landmarks = plt.scatter(polemap[:, 0],
                                polemap[:, 1],
                                s=1,
                                c='m',
                                marker='*',
                                label='Landmarks')
        iodo = 1
        for ieval in range(n):
            while timestamps[iodo] < t_eval[ieval]:
                iodo += 1
            T_w_velo_est_interp = util.interpolate_ht(
                T_w_velo_est[iodo - 1:iodo + 1], timestamps[iodo - 1:iodo + 1],
                t_eval[ieval])
            T_gt_est[ieval] = util.invert_ht(
                T_w_velo_gt_interp[ieval]).dot(T_w_velo_est_interp)
        lonerror[:, ifile] = T_gt_est[:, 0, 3]
        laterror[:, ifile] = T_gt_est[:, 1, 3]
        poserror[:, ifile] = np.linalg.norm(T_gt_est[:, :2, 3], axis=1)
        angerror[:, ifile] = util.ht2xyp(T_gt_est)[:, 2]
        plt.plot(T_w_velo_est[:, 0, 3],
                 T_w_velo_est[:, 1, 3],
                 'r',
                 label='Estimated trajectory')
        plt.ylabel('North (Unit:m)')
        plt.xlabel('East (Unit:m)')
        plt.legend()
        plt.gcf().subplots_adjust(bottom=0.13,
                                  top=0.98,
                                  left=0.145,
                                  right=0.98)
        plt.grid(color=(0.5, 0.5, 0.5), linestyle='-', linewidth=1)
    angerror = np.degrees(angerror)
    lonstd = np.std(lonerror, axis=0)
    latstd = np.std(laterror, axis=0)
    angstd = np.std(angerror, axis=0)
    angerror = np.abs(angerror)
    laterror = np.mean(np.abs(laterror), axis=0)
    lonerror = np.mean(np.abs(lonerror), axis=0)
    posrmse = np.sqrt(np.mean(poserror**2, axis=0))
    angrmse = np.sqrt(np.mean(angerror**2, axis=0))
    poserror = np.mean(poserror, axis=0)
    angerror = np.mean(angerror, axis=0)
    plt.savefig(os.path.join(trajectory_dir, 'trajectory_est.svg'))
    plt.savefig(os.path.join(trajectory_dir, 'trajectory_est.png'))
    np.savez(os.path.join(seqdir, evalfile),
             poserror=poserror,
             angerror=angerror,
             posrmse=posrmse,
             angrmse=angrmse,
             laterror=laterror,
             latstd=latstd,
             lonerror=lonerror,
             lonstd=lonstd)
    print('poserror: {}\nposrmse: {}\n'
          'laterror: {}\nlatstd: {}\n'
          'lonerror: {}\nlonstd: {}\n'
          'angerror: {}\nangstd: {}\nangrmse: {}'.format(
              np.mean(poserror), np.mean(posrmse), np.mean(laterror),
              np.mean(latstd), np.mean(lonerror), np.mean(lonstd),
              np.mean(angerror), np.mean(angstd), np.mean(angrmse)))
Esempio n. 4
0
def evaluate(seq):
    sequence = dataset.sequence(seq)
    T_w_velo_gt = np.matmul(sequence.poses, sequence.calib.T_cam0_velo)
    T_w_velo_gt = np.array([util.project_xy(ht) for ht in T_w_velo_gt])
    seqdir = os.path.join('kitti', '{:03d}'.format(seq))
    mapdata = np.load(os.path.join(seqdir, globalmapfile))
    polemap = mapdata['polemeans']
    plt.scatter(polemap[:, 0], polemap[:, 1], s=1, c='b')
    plt.plot(T_w_velo_gt[:, 0, 3], T_w_velo_gt[:, 1, 3], color=(0.5, 0.5, 0.5))
    cumdist = np.hstack([
        0.0,
        np.cumsum(
            np.linalg.norm(np.diff(T_w_velo_gt[:, :2, 3], axis=0), axis=1))
    ])
    timestamps = np.array([arrow.get(timestamp).float_timestamp \
        for timestamp in sequence.timestamps])
    t_eval = scipy.interpolate.interp1d(cumdist, timestamps)(np.arange(
        0.0, cumdist[-1], 1.0))
    n = t_eval.size
    T_w_velo_gt_interp = np.empty([n, 4, 4])
    iodo = 1
    for ieval in range(n):
        while timestamps[iodo] < t_eval[ieval]:
            iodo += 1
        T_w_velo_gt_interp[ieval] = util.interpolate_ht(
            T_w_velo_gt[iodo - 1:iodo + 1], timestamps[iodo - 1:iodo + 1],
            t_eval[ieval])
    files = [file for file in os.listdir(seqdir) \
        if os.path.basename(file).startswith(locfileprefix)]
    poserror = np.full([n, len(files)], np.nan)
    laterror = np.full([n, len(files)], np.nan)
    lonerror = np.full([n, len(files)], np.nan)
    angerror = np.full([n, len(files)], np.nan)
    T_gt_est = np.full([n, 4, 4], np.nan)
    for ifile in range(len(files)):
        T_w_velo_est = np.load(os.path.join(seqdir,
                                            files[ifile]))['T_w_velo_est']
        iodo = 1
        for ieval in range(n):
            while timestamps[iodo] < t_eval[ieval]:
                iodo += 1
            T_w_velo_est_interp = util.interpolate_ht(
                T_w_velo_est[iodo - 1:iodo + 1], timestamps[iodo - 1:iodo + 1],
                t_eval[ieval])
            T_gt_est[ieval] = util.invert_ht(
                T_w_velo_gt_interp[ieval]).dot(T_w_velo_est_interp)
        lonerror[:, ifile] = T_gt_est[:, 0, 3]
        laterror[:, ifile] = T_gt_est[:, 1, 3]
        poserror[:, ifile] = np.linalg.norm(T_gt_est[:, :2, 3], axis=1)
        angerror[:, ifile] = util.ht2xyp(T_gt_est)[:, 2]
        plt.plot(T_w_velo_est[:, 0, 3], T_w_velo_est[:, 1, 3], 'r')
    angerror = np.degrees(angerror)
    lonstd = np.std(lonerror, axis=0)
    latstd = np.std(laterror, axis=0)
    angstd = np.std(angerror, axis=0)
    angerror = np.abs(angerror)
    laterror = np.mean(np.abs(laterror), axis=0)
    lonerror = np.mean(np.abs(lonerror), axis=0)
    posrmse = np.sqrt(np.mean(poserror**2, axis=0))
    angrmse = np.sqrt(np.mean(angerror**2, axis=0))
    poserror = np.mean(poserror, axis=0)
    angerror = np.mean(angerror, axis=0)
    plt.savefig(os.path.join(seqdir, 'trajectory_est.svg'))
    np.savez(os.path.join(seqdir, evalfile),
             poserror=poserror,
             angerror=angerror,
             posrmse=posrmse,
             angrmse=angrmse,
             laterror=laterror,
             latstd=latstd,
             lonerror=lonerror,
             lonstd=lonstd)
    print('poserror: {}\nposrmse: {}\n'
          'laterror: {}\nlatstd: {}\n'
          'lonerror: {}\nlonstd: {}\n'
          'angerror: {}\nangstd: {}\nangrmse: {}'.format(
              np.mean(poserror), np.mean(posrmse), np.mean(laterror),
              np.mean(latstd), np.mean(lonerror), np.mean(lonstd),
              np.mean(angerror), np.mean(angstd), np.mean(angrmse)))
Esempio n. 5
0
def localize(sessionname, visualize=False):
    print(sessionname)
    mapdata = np.load(
        os.path.join(pynclt.resultdir,
                     get_globalmapname() + '.npz'))
    polemap = mapdata['polemeans'][:, :2]
    polevar = 1.50
    session = pynclt.session(sessionname)
    locdata = np.load(os.path.join(session.dir, get_localmapfile()),
                      allow_pickle=True)['maps']
    polepos_m = []
    polepos_w = []
    for i in range(len(locdata)):
        n = locdata[i]['poleparams'].shape[0]
        pad = np.hstack([np.zeros([n, 1]), np.ones([n, 1])])
        polepos_m.append(np.hstack([locdata[i]['poleparams'][:, :2], pad]).T)
        polepos_w.append(locdata[i]['T_w_m'].dot(polepos_m[i]))
    istart = 0
    # igps = np.searchsorted(session.t_gps, session.t_relodo[istart]) + [-4, 1]
    # igps = np.clip(igps, 0, session.gps.shape[0] - 1)
    # T_w_r_start = pynclt.T_w_o
    # T_w_r_start[:2, 3] = np.mean(session.gps[igps], axis=0)
    T_w_r_start = util.project_xy(
        session.get_T_w_r_gt(session.t_relodo[istart]).dot(T_r_mc)).dot(T_mc_r)
    filter = particlefilter.particlefilter(500,
                                           T_w_r_start,
                                           2.5,
                                           np.radians(5.0),
                                           polemap,
                                           polevar,
                                           T_w_o=T_mc_r)
    #   Init: particlefilter(count = #particles, start: init pose, posrange: for init, angrange: for init,\
    #   polemeans: global map data, polevar, T_w_o=np.identity(4))
    filter.estimatetype = 'best'
    filter.minneff = 0.5

    # filter = inEKF.inEKF(T_w_r_start, polemap, polevar, T_w_o = T_mc_r)

    if visualize:
        plt.ion()
        figure = plt.figure()
        nplots = 1
        mapaxes = figure.add_subplot(nplots, 1, 1)
        mapaxes.set_aspect('equal')
        mapaxes.scatter(polemap[:, 0], polemap[:, 1], s=5, c='b', marker='s')
        x_gt, y_gt = session.T_w_r_gt[::20, :2, 3].T
        mapaxes.plot(x_gt, y_gt, 'g')
        particles = mapaxes.scatter([], [], s=1, c='r')
        arrow = mapaxes.arrow(0.0,
                              0.0,
                              1.0,
                              0.0,
                              length_includes_head=True,
                              head_width=0.7,
                              head_length=1.0,
                              color='k')
        arrowdata = np.hstack(
            [arrow.get_xy(), np.zeros([8, 1]),
             np.ones([8, 1])]).T
        locpoles = mapaxes.scatter([], [], s=30, c='k', marker='x')
        viewoffset = 25.0

        # weightaxes = figure.add_subplot(nplots, 1, 2)
        # gridsize = 50
        # offset = 5.0
        # visfilter = particlefilter.particlefilter(gridsize**2,
        #     np.identity(4), 0.0, 0.0, polemap,
        #     polevar, T_w_o=pynclt.T_w_o)
        # gridcoord = np.linspace(-offset, offset, gridsize)
        # x, y = np.meshgrid(gridcoord, gridcoord)
        # dxy = np.hstack([x.reshape([-1, 1]), y.reshape([-1, 1])])
        # weightimage = weightaxes.matshow(np.zeros([gridsize, gridsize]),
        #     extent=(-offset, offset, -offset, offset))
        # histaxes = figure.add_subplot(nplots, 1, 3)

    imap = 0
    while imap < locdata.shape[0] - 1 and session.t_velo[
            locdata[imap]['iend']] < session.t_relodo[istart]:
        imap += 1
    T_w_r_est = np.full([session.t_relodo.size, 4, 4], np.nan)

    #steps = 5000
    x_sigma_contour = np.zeros(session.t_relodo.size)
    y_sigma_contour = np.zeros(session.t_relodo.size)
    p_sigma_contour = np.zeros(session.t_relodo.size)
    x_err = np.zeros(session.t_relodo.size)
    y_err = np.zeros(session.t_relodo.size)
    p_err = np.zeros(session.t_relodo.size)

    with progressbar.ProgressBar(max_value=session.t_relodo.size) as bar:
        for i in range(istart, session.t_relodo.size):
            #for i in range(istart, istart + steps):
            relodocov = np.empty([3, 3])
            relodocov[:2, :2] = session.relodocov[i, :2, :2]
            relodocov[:, 2] = session.relodocov[i, [0, 1, 5], 5]
            relodocov[2, :] = session.relodocov[i, 5, [0, 1, 5]]

            filter.update_motion(
                session.relodo[i], relodocov
            )  ### relodocov  #propagate: session.relodo[i]=[x,y,p] in R^3
            T_w_r_est[i] = filter.estimate_pose()  ## estimate pose

            t_now = session.t_relodo[i]
            if imap < locdata.shape[0]:
                t_end = session.t_velo[locdata[imap]['iend']]
                if t_now >= t_end:
                    imaps = range(imap, np.clip(imap - n_localmaps, -1, None),
                                  -1)
                    xy = np.hstack([polepos_w[j][:2] for j in imaps]).T
                    a = np.vstack([ld['poleparams'][:, [4]] \
                     for ld in locdata[imaps]])
                    boxes = np.hstack([xy - 0.5 * a, xy + 0.5 * a])
                    ipoles = set(range(polepos_w[imap].shape[1]))
                    iactive = set()
                    for ci in cluster.cluster_boxes(boxes):
                        if len(ci) >= n_locdetections:
                            iactive |= set(ipoles) & ci
                    iactive = list(iactive)
                    # print('{}.'.format(
                    #     len(iactive) - polepos_w[imap].shape[1]))
                    if iactive:
                        t_mid = session.t_velo[locdata[imap]['imid']]
                        T_w_r_mid = util.project_xy(
                            session.get_T_w_r_odo(t_mid).dot(T_r_mc)).dot(
                                T_mc_r)
                        T_w_r_now = util.project_xy(
                            session.get_T_w_r_odo(t_now).dot(T_r_mc)).dot(
                                T_mc_r)
                        T_r_now_r_mid = util.invert_ht(T_w_r_now).dot(
                            T_w_r_mid)
                        polepos_r_now = T_r_now_r_mid.dot(T_r_m).dot(
                            polepos_m[imap]
                            [:, iactive])  # online poles(landmarks): lumbda

                        filter.update_measurement(
                            polepos_r_now[:2].T)  ### measurement update
                        T_w_r_est[i] = filter.estimate_pose()  ### estimate

                        if visualize:
                            polepos_w_est = T_w_r_est[i].dot(polepos_r_now)
                            locpoles.set_offsets(polepos_w_est[:2].T)

                            # T_w_r_gt_now = session.get_T_w_r_gt(t_now)
                            # T_w_r_gt_now = np.tile(
                            #     T_w_r_gt_now, [gridsize**2, 1, 1])
                            # T_w_r_gt_now[:, :2, 3] += dxy
                            # visfilter.particles = T_w_r_gt_now
                            # visfilter.weights[:] = 1.0 / visfilter.count
                            # visfilter.update_measurement(
                            #     polepos_r_now[:2].T, resample=False)
                            # weightimage.set_array(np.flipud(
                            #     visfilter.weights.reshape(
                            #         [gridsize, gridsize])))
                            # weightimage.autoscale()

                    imap += 1

            # estimattion error
            T_w_r_gt_i = util.project_xy(
                session.get_T_w_r_gt(session.t_relodo[i]).dot(T_r_mc)).dot(
                    T_mc_r)  # ground truth pose
            x_err[i] = T_w_r_est[i, 0, 3] - T_w_r_gt_i[0, 3]
            y_err[i] = T_w_r_est[i, 1, 3] - T_w_r_gt_i[1, 3]
            p_err[i] = np.arctan2(T_w_r_est[i, 1, 0],
                                  T_w_r_est[i, 0, 0]) - np.arctan2(
                                      T_w_r_gt_i[1, 0], T_w_r_gt_i[0, 0])
            p_err[i] = np.arctan2(np.sin(p_err[i]),
                                  np.cos(p_err[i]))  # wrap to [-pi, pi]
            # 3-sigma contour
            if isinstance(filter, inEKF.inEKF):
                x_sigma_contour[i] = 3 * np.sqrt(filter.Sigma[1, 1])
                y_sigma_contour[i] = 3 * np.sqrt(filter.Sigma[2, 2])
                p_sigma_contour[i] = 3 * np.sqrt(filter.Sigma[0, 0])
            elif isinstance(filter, particlefilter.particlefilter):
                x_sigma_contour[i] = 3 * np.sqrt(filter.Sigma[0, 0])
                y_sigma_contour[i] = 3 * np.sqrt(filter.Sigma[1, 1])
                p_sigma_contour[i] = 3 * np.sqrt(filter.Sigma[2, 2])

            if visualize:
                ## particles.set_offsets(filter.particles[:, :2, 3])
                arrow.set_xy(T_w_r_est[i].dot(arrowdata)[:2].T)
                x, y = T_w_r_est[i, :2, 3]
                mapaxes.set_xlim(left=x - viewoffset, right=x + viewoffset)
                mapaxes.set_ylim(bottom=y - viewoffset, top=y + viewoffset)
                # histaxes.cla()
                # histaxes.hist(filter.weights,
                #     bins=50, range=(0.0, np.max(filter.weights)))
                figure.canvas.draw_idle()
                figure.canvas.flush_events()
            bar.update(i)

    # Plot the NEES (normalized estimation error squared) graph
    fig = plt.figure()
    ax1 = plt.subplot(311)
    plt.plot(x_err, 'r', label="Deviance from Ground Truth")
    plt.plot(x_sigma_contour, 'b', label='3-Sigma Contour')
    plt.plot(-x_sigma_contour, 'b')
    plt.ylabel('x error')
    plt.xlabel('step')

    # ax.legend(loc='upper right', bbox_to_anchor=(1,0))
    ax2 = plt.subplot(312)
    plt.plot(y_err, 'r')
    plt.plot(y_sigma_contour, 'b')
    plt.plot(-y_sigma_contour, 'b')
    plt.ylabel('y error')
    plt.xlabel('step')

    ax3 = plt.subplot(313)
    plt.plot(p_err, 'r')
    plt.plot(p_sigma_contour, 'b')
    plt.plot(-p_sigma_contour, 'b')
    plt.ylabel('theta error')
    plt.xlabel('step')

    handles, labels = ax1.get_legend_handles_labels()
    fig.legend(handles, labels, 'upper right')
    plt.savefig(os.path.join(pynclt.resultdir, sessionname + '_NEES.png'))
    #plt.savefig("NEES.png")

    filename = os.path.join(session.dir, get_locfileprefix() \
     + datetime.datetime.now().strftime('_%Y-%m-%d_%H-%M-%S.npz'))
    np.savez(filename, T_w_r_est=T_w_r_est)
Esempio n. 6
0
def localize(sessionname, visualize=False):
    print(sessionname)
    mapdata = np.load(os.path.join(pynclt.resultdir, get_globalmapname() + '.npz'))
    polemap = mapdata['polemeans'][:, :2]
    polevar = 1.50
    session = pynclt.session(sessionname)
    locdata = np.load(os.path.join(session.dir, get_localmapfile()), allow_pickle=True)['maps']
    polepos_m = []
    polepos_w = []
    for i in range(len(locdata)):
        n = locdata[i]['poleparams'].shape[0]
        pad = np.hstack([np.zeros([n, 1]), np.ones([n, 1])])
        polepos_m.append(np.hstack([locdata[i]['poleparams'][:, :2], pad]).T)
        polepos_w.append(locdata[i]['T_w_m'].dot(polepos_m[i]))
    istart = 0
    # igps = np.searchsorted(session.t_gps, session.t_relodo[istart]) + [-4, 1]
    # igps = np.clip(igps, 0, session.gps.shape[0] - 1)
    # T_w_r_start = pynclt.T_w_o
    # T_w_r_start[:2, 3] = np.mean(session.gps[igps], axis=0)
    T_w_r_start = util.project_xy(
        session.get_T_w_r_gt(session.t_relodo[istart]).dot(T_r_mc)).dot(T_mc_r)
    filter = particlefilter.particlefilter(5000, 
        T_w_r_start, 2.5, np.radians(5.0), polemap, polevar, T_w_o=T_mc_r)
    filter.estimatetype = 'best'
    filter.minneff = 0.5

    if visualize:
        plt.ion()
        figure = plt.figure()
        nplots = 1
        mapaxes = figure.add_subplot(nplots, 1, 1)
        mapaxes.set_aspect('equal')
        mapaxes.scatter(polemap[:, 0], polemap[:, 1], s=5, c='b', marker='s')
        x_gt, y_gt = session.T_w_r_gt[::20, :2, 3].T
        mapaxes.plot(x_gt, y_gt, 'g')
        particles = mapaxes.scatter([], [], s=1, c='r')
        arrow = mapaxes.arrow(0.0, 0.0, 1.0, 0.0, length_includes_head=True, 
            head_width=0.7, head_length=1.0, color='k')
        arrowdata = np.hstack(
            [arrow.get_xy(), np.zeros([8, 1]), np.ones([8, 1])]).T
        locpoles = mapaxes.scatter([], [], s=30, c='k', marker='x')
        viewoffset = 25.0

        # weightaxes = figure.add_subplot(nplots, 1, 2)
        # gridsize = 50
        # offset = 5.0
        # visfilter = particlefilter.particlefilter(gridsize**2, 
        #     np.identity(4), 0.0, 0.0, polemap, 
        #     polevar, T_w_o=pynclt.T_w_o)
        # gridcoord = np.linspace(-offset, offset, gridsize)
        # x, y = np.meshgrid(gridcoord, gridcoord)
        # dxy = np.hstack([x.reshape([-1, 1]), y.reshape([-1, 1])])
        # weightimage = weightaxes.matshow(np.zeros([gridsize, gridsize]), 
        #     extent=(-offset, offset, -offset, offset))
        # histaxes = figure.add_subplot(nplots, 1, 3)

    imap = 0
    while imap < locdata.shape[0] - 1 and \
            session.t_velo[locdata[imap]['iend']] < session.t_relodo[istart]:
        imap += 1
    T_w_r_est = np.full([session.t_relodo.size, 4, 4], np.nan)
    with progressbar.ProgressBar(max_value=session.t_relodo.size) as bar:
        for i in range(istart, session.t_relodo.size):
            relodocov = np.empty([3, 3])
            relodocov[:2, :2] = session.relodocov[i, :2, :2]
            relodocov[:, 2] = session.relodocov[i, [0, 1, 5], 5]
            relodocov[2, :] = session.relodocov[i, 5, [0, 1, 5]]
            filter.update_motion(session.relodo[i], relodocov * 2.0**2)
            T_w_r_est[i] = filter.estimate_pose()
            t_now = session.t_relodo[i]
            if imap < locdata.shape[0]:
                t_end = session.t_velo[locdata[imap]['iend']]
                if t_now >= t_end:
                    imaps = range(imap, np.clip(imap-n_localmaps, -1, None), -1)
                    xy = np.hstack([polepos_w[j][:2] for j in imaps]).T
                    a = np.vstack([ld['poleparams'][:, [4]] \
                        for ld in locdata[imaps]])
                    boxes = np.hstack([xy - 0.5 * a, xy + 0.5 * a])
                    ipoles = set(range(polepos_w[imap].shape[1]))
                    iactive = set()
                    for ci in cluster.cluster_boxes(boxes):
                        if len(ci) >= n_locdetections:
                            iactive |= set(ipoles) & ci
                    iactive = list(iactive)
                    # print('{}.'.format(
                    #     len(iactive) - polepos_w[imap].shape[1]))
                    if iactive:
                        t_mid = session.t_velo[locdata[imap]['imid']]
                        T_w_r_mid = util.project_xy(session.get_T_w_r_odo(
                            t_mid).dot(T_r_mc)).dot(T_mc_r)
                        T_w_r_now = util.project_xy(session.get_T_w_r_odo(
                            t_now).dot(T_r_mc)).dot(T_mc_r)
                        T_r_now_r_mid = util.invert_ht(T_w_r_now).dot(T_w_r_mid)
                        polepos_r_now = T_r_now_r_mid.dot(T_r_m).dot(
                            polepos_m[imap][:, iactive])
                        filter.update_measurement(polepos_r_now[:2].T)
                        T_w_r_est[i] = filter.estimate_pose()
                        if visualize:
                            polepos_w_est = T_w_r_est[i].dot(polepos_r_now)
                            locpoles.set_offsets(polepos_w_est[:2].T)

                            # T_w_r_gt_now = session.get_T_w_r_gt(t_now)
                            # T_w_r_gt_now = np.tile(
                            #     T_w_r_gt_now, [gridsize**2, 1, 1])
                            # T_w_r_gt_now[:, :2, 3] += dxy
                            # visfilter.particles = T_w_r_gt_now
                            # visfilter.weights[:] = 1.0 / visfilter.count
                            # visfilter.update_measurement(
                            #     polepos_r_now[:2].T, resample=False)
                            # weightimage.set_array(np.flipud(
                            #     visfilter.weights.reshape(
                            #         [gridsize, gridsize])))
                            # weightimage.autoscale()
                    imap += 1
            
            if visualize:
                particles.set_offsets(filter.particles[:, :2, 3])
                arrow.set_xy(T_w_r_est[i].dot(arrowdata)[:2].T)
                x, y = T_w_r_est[i, :2, 3]
                mapaxes.set_xlim(left=x - viewoffset, right=x + viewoffset)
                mapaxes.set_ylim(bottom=y - viewoffset, top=y + viewoffset)
                # histaxes.cla()
                # histaxes.hist(filter.weights, 
                #     bins=50, range=(0.0, np.max(filter.weights)))
                figure.canvas.draw_idle()
                figure.canvas.flush_events()
            bar.update(i)
    filename = os.path.join(session.dir, get_locfileprefix() \
        + datetime.datetime.now().strftime('_%Y-%m-%d_%H-%M-%S.npz'))
    np.savez(filename, T_w_r_est=T_w_r_est)
Esempio n. 7
0
def localize(sessionname, visualize=False):
    print(sessionname)
    mapdata = np.load(
        os.path.join(pynclt.resultdir,
                     get_globalmapname() + '.npz'))
    polemap = mapdata['polemeans'][:, :2]
    polevar = 1.50
    session = pynclt.session(sessionname)
    figuresdir = os.path.join(
        pynclt.resultdir, session.dir,
        'Figures_{:.0f}_{:.0f}_{:.0f}'.format(n_mapdetections,
                                              10 * poles.minscore,
                                              poles.polesides[-1]))
    util.makedirs(figuresdir)
    locdata = np.load(os.path.join(session.dir, get_localmapfile()),
                      allow_pickle=True)['maps']
    polepos_m = []
    polepos_w = []
    for i in range(len(locdata)):
        n = locdata[i]['poleparams'].shape[0]
        pad = np.hstack([np.zeros([n, 1]), np.ones([n, 1])])
        polepos_m.append(np.hstack([locdata[i]['poleparams'][:, :2], pad]).T)
        polepos_w.append(locdata[i]['T_w_m'].dot(polepos_m[i]))
    istart = 0

    T_w_r_start = util.project_xy(
        session.get_T_w_r_gt(session.t_relodo[istart]).dot(T_r_mc)).dot(T_mc_r)
    filter = particlefilter.particlefilter(5000,
                                           T_w_r_start,
                                           2.5,
                                           np.radians(5.0),
                                           polemap,
                                           polevar,
                                           T_w_o=T_mc_r)
    filter.estimatetype = 'best'
    filter.minneff = 0.5

    if visualize:
        plt.ion()
        figure = plt.figure()
        nplots = 1
        mapaxes = figure.add_subplot(nplots, 1, 1)
        mapaxes.set_aspect('equal')
        mapaxes.scatter(polemap[:, 0], polemap[:, 1], s=10, c='b', marker='s')
        x_gt, y_gt = session.T_w_r_gt[::20, :2, 3].T
        mapaxes.plot(x_gt, y_gt, 'g')
        particles = mapaxes.scatter([], [], s=1, c='r')
        arrow = mapaxes.arrow(0.0,
                              0.0,
                              4.0,
                              0.0,
                              length_includes_head=True,
                              head_width=1.2,
                              head_length=1.5,
                              color='k')
        arrowdata = np.hstack(
            [arrow.get_xy(), np.zeros([8, 1]),
             np.ones([8, 1])]).T
        locpoles = mapaxes.scatter([], [], s=30, c='y', marker='^')
        viewoffset = 25.0

    imap = 0
    while imap < locdata.shape[0] - 1 and \
            session.t_velo[locdata[imap]['iend']] < session.t_relodo[istart]:
        imap += 1
    T_w_r_est = np.full([session.t_relodo.size, 4, 4], np.nan)
    with progressbar.ProgressBar(max_value=session.t_relodo.size) as bar:
        for i in range(istart, session.t_relodo.size):
            relodocov = np.empty([3, 3])
            relodocov[:2, :2] = session.relodocov[i, :2, :2]
            relodocov[:, 2] = session.relodocov[i, [0, 1, 5], 5]
            relodocov[2, :] = session.relodocov[i, 5, [0, 1, 5]]
            filter.update_motion(session.relodo[i], relodocov * 2.0**2)
            T_w_r_est[i] = filter.estimate_pose()
            t_now = session.t_relodo[i]
            if imap < locdata.shape[0]:
                t_end = session.t_velo[locdata[imap]['iend']]
                if t_now >= t_end:
                    imaps = range(imap, np.clip(imap - n_localmaps, -1, None),
                                  -1)
                    xy = np.hstack([polepos_w[j][:2] for j in imaps]).T
                    a = np.vstack([ld['poleparams'][:, [4]] \
                        for ld in locdata[imaps]])
                    boxes = np.hstack([xy - 0.5 * a, xy + 0.5 * a])
                    ipoles = set(range(polepos_w[imap].shape[1]))
                    iactive = set()
                    for ci in cluster.cluster_boxes(boxes):
                        if len(ci) >= n_locdetections:
                            iactive |= set(ipoles) & ci
                    iactive = list(iactive)

                    if iactive:
                        t_mid = session.t_velo[locdata[imap]['imid']]
                        T_w_r_mid = util.project_xy(
                            session.get_T_w_r_odo(t_mid).dot(T_r_mc)).dot(
                                T_mc_r)
                        T_w_r_now = util.project_xy(
                            session.get_T_w_r_odo(t_now).dot(T_r_mc)).dot(
                                T_mc_r)
                        T_r_now_r_mid = util.invert_ht(T_w_r_now).dot(
                            T_w_r_mid)
                        polepos_r_now = T_r_now_r_mid.dot(T_r_m).dot(
                            polepos_m[imap][:, iactive])
                        filter.update_measurement(polepos_r_now[:2].T)
                        T_w_r_est[i] = filter.estimate_pose()
                        if visualize:
                            polepos_w_est = T_w_r_est[i].dot(polepos_r_now)
                            locpoles.set_offsets(polepos_w_est[:2].T)

                    imap += 1

            if visualize:
                particles.set_offsets(filter.particles[:, :2, 3])
                arrow.set_xy(T_w_r_est[i].dot(arrowdata)[:2].T)
                x, y = T_w_r_est[i, :2, 3]
                mapaxes.set_xlim(left=x - viewoffset, right=x + viewoffset)
                mapaxes.set_ylim(bottom=y - viewoffset, top=y + viewoffset)
                # Save figures for generating GIF
                if i % 25 == 0:
                    filename = sessionname + '_' + str(i) + '_'
                    figure.savefig(os.path.join(figuresdir, filename + '.png'))
                figure.canvas.draw_idle()
                figure.canvas.flush_events()
            bar.update(i)
    filename = os.path.join(session.dir, get_locfileprefix() \
        + datetime.datetime.now().strftime('_%Y-%m-%d_%H-%M-%S.npz'))
    np.savez(filename, T_w_r_est=T_w_r_est)