Esempio n. 1
0
def ntrial(numTrial, numTrain, numTest):
    for i in range(numTrial):
        #data
        [X, Y, T] = dt.sample_poly3(numTrain+numTest);
        [xTrain, yTrain, tTrain, xTest, yTest, tTest] = util.sepTrainTest4Reg(numTrain,numTest,\
                X,T,Y);

        errTrainPoly, errTestPoly = pR.run (xTrain, yTrain, tTrain, xTest, yTest, tTest, 4);
        #errTrainPoly, errTestPoly = ppR.run(xTrain, yTrain, tTrain, xTest, yTest, tTest, 4);
        errTrainBay, errTestBay = bcf.run(xTrain, yTrain, tTrain, xTest, yTest, tTest, 4);
        errPoly[0].append(round(errTrainPoly,6));
        errPoly[1].append(round(errTestPoly,6)); 
        errBay[0].append(round(errTrainBay,6));
        errBay[1].append(round(errTestBay,6));

    return errPoly, errBay;
Esempio n. 2
0
    t = pl.plot(xTest, yTest, 'go', label="test data")
    o = pl.plot(xTest, oTest, 'ro', label="predicted")
    #pl.legend((t,o), ("target", "predicted"));
    pl.title('Polynomial Regression test set with degree ' + str(K - 1))


if __name__ == '__main__':

    K = 4
    kList = [3]
    errorTrain = [0] * len(kList)
    errorTest = [0] * len(kList)

    #data
    [X, Y, T] = dt.sample_poly3(60)
    [xTrain, yTrain, tTrain, xTest, yTest, tTest] = util.sepTrainTest4Reg(40,20,\
            X,T,Y)

    oTrain, mean = bayesianCurveFitting(xTrain, np.array(yTrain))

    #graph
    pl.figure(1)
    t = pl.plot(xTrain, yTrain, 'go')
    o = pl.plot(xTrain, oTrain, 'ro-')
    #pl.plot(xTrain, oTrain2, 'bo-');
    #pl.legend((t, o), ("target", "predicted"));
    pl.ylim([-8, 5])
    pl.title('Bayesian Regression train set with K=' + str(K))

    Basis = basisX(xTest)
    N = Basis.shape[1]
    oTest = eval1(np.array(yTest), Basis.T, mean, N)
Esempio n. 3
0
    # evaluating train
    oTrain = NPolynomReg(K, xTrain, yTrain, beta, w)
    print "Euclidean error distance for train: "
    print np.linalg.norm(np.array(yTrain) - oTrain)

    # evaluating test
    oTest = NPolynomReg(K, xTest, yTest, beta, w)
    print "Euclidean error distance for test: "
    print np.linalg.norm(np.array(oTest) - yTest)

    # graph
    pl.figure(3)
    t = pl.plot(xTrain, yTrain, "go", label="train data")
    pl.plot(xTrain, oTrain2, "bo-", label="curve fit")
    # pl.legend((t, o), ("target", "predicted"));
    # pl.ylim([-8,5]);
    pl.title("Polynomial Regression train set with degree " + str(K - 1))

    pl.figure(4)
    t = pl.plot(xTest, yTest, "go", label="test data")
    o = pl.plot(xTest, oTest, "ro", label="predicted")
    # pl.legend((t,o), ("target", "predicted"));
    pl.title("Polynomial Regression test set with degree " + str(K - 1))


if __name__ == "__main__":
    [X, Y, T] = dt.sample_poly3(100)
    [xTrain, yTrain, tTrain, xTest, yTest, tTest] = util.sepTrainTest4Reg(50, 50, X, T, Y)
    errTrainPoly, errTestPoly = ppR.run(xTrain, yTrain, tTrain, xTest, yTest, tTest, 4)
    pl.show()
    o = pl.plot(xTest, oTest, 'ro', label="predicted");
    #pl.legend((t,o), ("target", "predicted"));
    pl.title('Polynomial Regression test set with degree ' + str(K-1));


if __name__ == '__main__':


    K = 4;
    kList = [3];
    errorTrain = [0]*len(kList);
    errorTest = [0]*len(kList);
    
    #data
    [X, Y, T] = dt.sample_poly3(60);
    [xTrain, yTrain, tTrain, xTest, yTest, tTest] = util.sepTrainTest4Reg(40,20,\
            X,T,Y);

    oTrain, mean = bayesianCurveFitting(xTrain, np.array(yTrain));
    
    #graph
    pl.figure(1);
    t = pl.plot(xTrain, yTrain, 'go');
    o = pl.plot(xTrain, oTrain, 'ro-');
    #pl.plot(xTrain, oTrain2, 'bo-');
    #pl.legend((t, o), ("target", "predicted"));
    pl.ylim([-8,5]);
    pl.title('Bayesian Regression train set with K=' + str(K));

    Basis = basisX(xTest); 
    N = Basis.shape[1];
    oTest = eval1(np.array(yTest), Basis.T, mean, N);