Esempio n. 1
0
 def __init__(self,
              input_file_path,
              images_per_batch=50,
              train_percentage=0.8,
              max_sample_records=1000):
     self.input_file_path = input_file_path
     folders = os.listdir(self.input_file_path)
     folders = sanitize_data_folders(folders)
     self.train_folders, self.test_folders = Dataset.train_test_split(
         folders)
     self.train_percentage = train_percentage
     self.max_sample_records = max_sample_records
     self.train_metadata_summaries, self.train_metadata = summarize_metadata(
         self.input_file_path, self.train_folders)
     self.train_folder_weights = self.get_folder_weights(self.train_folders)
     self.test_metadata_summaries, self.test_metadata = summarize_metadata(
         self.input_file_path, self.test_folders)
     self.test_folder_weights = self.get_folder_weights(self.test_folders)
     self.images_per_batch = images_per_batch
     self.images_per_epoch = int(
         self.train_metadata_summaries['image_count'] *
         self.train_percentage)
     self.batches_per_epoch = int(self.images_per_epoch /
                                  self.images_per_batch)
     self.samples_per_epoch = int(self.images_per_epoch /
                                  self.max_sample_records)
Esempio n. 2
0
 def __init__(self,input_file_path,images_per_batch=50,train_percentage=0.8, max_sample_records=1000):
     self.input_file_path = input_file_path
     folders = os.listdir(self.input_file_path)
     folders = sanitize_data_folders(folders)
     self.train_percentage = train_percentage
     self.train_folders, self.test_folders = self.train_test_split(folders)
     self.max_sample_records = max_sample_records
     self.train_metadata_summaries, self.train_metadata = summarize_metadata(self.input_file_path,self.train_folders)
     self.train_folder_weights = self.get_folder_weights(self.train_folders)
     self.test_metadata_summaries, self.test_metadata = summarize_metadata(self.input_file_path, self.test_folders)
     self.test_folder_weights = self.get_folder_weights(self.test_folders)
     self.images_per_batch = images_per_batch
     self.images_per_epoch = self.train_metadata_summaries['image_count']
     self.batches_per_epoch = int(self.images_per_epoch / self.images_per_batch)
     self.samples_per_epoch = int(self.images_per_epoch / self.max_sample_records)
Esempio n. 3
0
 def __init__(self,input_file_path,images_per_batch=50,images_per_sample=3000,train_percentage=0.8):
     self.input_file_path = input_file_path
     folders = os.listdir(input_file_path)
     self.train_folders, self.test_folders = self.train_test_split(folders)
     metadata_summaries = summarize_metadata(input_file_path)
     self.train_percentage = train_percentage
     self.images_per_batch = images_per_batch
     self.images_per_sample = images_per_sample
     self.images_per_epoch = int(metadata_summaries['image_count'] * self.train_percentage)
     self.samples_per_epoch = int(self.images_per_epoch / self.images_per_sample)
Esempio n. 4
0
 def get_folder_weights(self,folders):
     folder_weights = {}
     metadata_summaries, folder_metadata = summarize_metadata(self.input_file_path, include_folders=folders)
     images_processed = 0
     for folder, metadata in folder_metadata.items():
         upper_bound = images_processed + metadata['image_count']
         folder_weights[folder] = {'lower_bound': images_processed,
                                   'upper_bound': upper_bound,
                                   'weight': metadata['image_count'] / metadata_summaries['image_count']}
         images_processed = upper_bound
     return folder_weights
Esempio n. 5
0
 def get_folder_weights(self, folders):
     folder_weights = {}
     metadata_summaries, folder_metadata = summarize_metadata(
         self.input_file_path, include_folders=folders)
     images_processed = 0
     for folder, metadata in folder_metadata.items():
         upper_bound = images_processed + metadata['image_count']
         folder_weights[folder] = {
             'lower_bound':
             images_processed,
             'upper_bound':
             upper_bound,
             'weight':
             metadata['image_count'] / metadata_summaries['image_count']
         }
         images_processed = upper_bound
     return folder_weights