Esempio n. 1
0
def doMIMICExtraction(mimic):
    optimal = mimic.getOptimal()
    fill = [0] * optimal.size()
    ddata = array('d', fill)
    for i in range(0, len(ddata)):
        ddata[i] = optimal.getContinuous(i)
    order = ABAGAILArrays.indices(optimal.size())
    ABAGAILArrays.quicksort(ddata, order)
    print order
    return order
Esempio n. 2
0
def doMIMICExtraction(mimic):
    optimal = mimic.getOptimal()
    fill = [0] * optimal.size()
    ddata = array('d', fill)
    for i in range(0, len(ddata)):
        ddata[i] = optimal.getContinuous(i)
    order = ABAGAILArrays.indices(optimal.size())
    ABAGAILArrays.quicksort(ddata, order)
    print order
    return order
def solveit(oaname, params):
    # set N value.  This is the number of points
    N = 50
    iterations = 1000
    tryi = 1
    random = Random()

    points = [[0 for x in xrange(2)] for x in xrange(N)]
    for i in range(0, len(points)):
        points[i][0] = random.nextDouble()
        points[i][1] = random.nextDouble()

    ef = TravelingSalesmanRouteEvaluationFunction(points)
    odd = DiscretePermutationDistribution(N)
    nf = SwapNeighbor()
    mf = SwapMutation()
    cf = TravelingSalesmanCrossOver(ef)
    hcp = GenericHillClimbingProblem(ef, odd, nf)
    gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf)

    if oaname == "RHC":
        iterations = int(params[0])
        tryi = int(params[1])
        oa = RandomizedHillClimbing(hcp)
    if oaname == "SA":    
        oa = SimulatedAnnealing(float(params[0]), float(params[1]), hcp)
    if oaname == "GA":
        iterations=1000
        oa = StandardGeneticAlgorithm(int(params[0]), int(params[1]), int(params[2]), gap)
    if oaname == "MMC":
        iterations=1000
        # for mimic we use a sort encoding
        ef = TravelingSalesmanSortEvaluationFunction(points)
        fill = [N] * N
        ranges = array('i', fill)
        odd = DiscreteUniformDistribution(ranges)
        df = DiscreteDependencyTree(.1, ranges)
        pop = GenericProbabilisticOptimizationProblem(ef, odd, df)
        oa = MIMIC(int(params[0]), int(params[1]), pop)

    print "Running %s using %s for %d iterations, try %d" % (oaname, ','.join(params), iterations, tryi)
    print "="*20
    starttime = timeit.default_timer()
    output = []
    for i in range(iterations):
        oa.train()
        if i%10 == 0:
            optimal = oa.getOptimal()
            score = ef.value(optimal)
            elapsed = int(timeit.default_timer()-starttime)
            output.append([str(i), str(score), str(elapsed)])

    print 'Inverse of Distance [score]: %.3f' % score
    print 'train time: %d secs' % (int(timeit.default_timer()-starttime))

    scsv = 'tsp-%s-%s.csv' % (oaname, '-'.join(params))
    print "Saving to %s" % (scsv),
    with open(scsv, 'w') as csvf:
        writer = csv.writer(csvf)
        for row in output:
            writer.writerow(row)
    print "saved."
    print "="*20

    print "Route:"
    if oaname == 'MMC':
        optimal = oa.getOptimal()
        fill = [0] * optimal.size()
        ddata = array('d', fill)
        for i in range(0,len(ddata)):
            ddata[i] = optimal.getContinuous(i)
        order = ABAGAILArrays.indices(optimal.size())
        ABAGAILArrays.quicksort(ddata, order)
        print order
    else:
        path = []
        for x in range(0,N):
            path.append(oa.getOptimal().getDiscrete(x))
        print path
Esempio n. 4
0
    start = clock()
    fit.train()
    end = clock()
    total_time = end - start
    max_fit = ef.value(mimic.getOptimal())
    time_optimum = [total_time, max_fit]
    mimic_data.append(time_optimum)
    print "MIMIC Inverse of Distance: " + str(ef.value(mimic.getOptimal()))
    print "Route:"
    path = []
    optimal = mimic.getOptimal()
    fill = [0] * optimal.size()
    ddata = array('d', fill)
    for i in range(0, len(ddata)):
        ddata[i] = optimal.getContinuous(i)
    order = ABAGAILArrays.indices(optimal.size())
    ABAGAILArrays.quicksort(ddata, order)
    print order
#
# print("-------------------------------------")
#
# print("Hill Climbing Times:\n")
# print hill_climbing_times
# print("Hill Climbing Fitness:\n")
# print hill_climbing_fitness
#
# print("-------------------------------------")
#
# print("Annealing Times:\n")
# print annealing_times
# print("Annealing Fitness:\n")
Esempio n. 5
0
def main():

    iterations = 200000
    alg = 'all'
    gaPop = 2000
    gaMate = 1500
    gaMutate = 250
    mimicSamples = 500
    mimicToKeep = 100
    saTemp = 1E12
    saCooling = .999
    gaIters = 1000
    mimicIters = 1000
    run = 0
    settings = []

    try:
        opts, args = getopt.getopt(sys.argv[1:], "ahrsgmn:i:", ["gaIters=", "mimicIters=", "gaPop=", "gaMate=", "gaMutate=", "mimicSamples=", "mimicToKeep=", "saTemp=", "saCooling="])
    except:
        print 'travelingsalesman.py -i <iterations>'
        sys.exit(2)
    for opt, arg in opts:
        if opt == '-h':
            print 'travelingsalesman.py -i <iterations>'
            sys.exit(1)
        elif opt == '-i':
            if arg < 1:
                print 'Iterations must be greater than 0'
                sys.exit(2)
            iterations = int(arg)
        elif opt == '-a':
            alg = 'all'
        elif opt == '-r':
            alg = 'RHC'
        elif opt == '-s':
            alg = 'SA'
        elif opt == '-g':
            alg = 'GA'
        elif opt == '-m':
            alg = 'MIMIC'
        elif opt == '--gaPop':
            if arg < 1:
                print 'Population must be greater than 0'
                sys.exit(2)
            gaPop = int(arg)
        elif opt == '--gaMate':
            if arg < 1:
                print 'Mating must be greater than 0'
                sys.exit(2)
            gaMate = int(arg)
        elif opt == '--gaMutate':
            if arg < 1:
                print 'Mutators must be greater than 0'
                sys.exit(2)
            gaMutate = int(arg)
        elif opt == '--mimicSamples':
            if arg < 1:
                print 'MIMIC samples must be greater than 0'
                sys.exit(2)
            mimicSamples = int(arg)
        elif opt == '--mimicToKeep':
            if arg < 1:
                print 'MIMIC to keep must be greater than 0'
                sys.exit(2)
            mimicToKeep = int(arg)
        elif opt == '--saTemp':
            saTemp = float(arg)
        elif opt == '--saCooling':
            saCooling = float(arg)
        elif opt == '-n':
            run = int(arg)
        elif opt == '--gaIters':
            if arg < 1:
                print 'GA Iterations must be greater than 0'
                sys.exit(2)
            gaIters = int(arg)
        elif opt == '--mimicIters':
            if arg < 1:
                print 'MIMIC Iterations must be greater than 0'
                sys.exit(2)
            mimicIters = int(arg)

    vars = {
            'iterations' : iterations,
            'alg' : alg,
            'gaPop' : gaPop,
            'gaMate' : gaMate,
            'gaMutate' : gaMutate,
            'mimicSamples' : mimicSamples,
            'mimicToKeep' : mimicToKeep,
            'saTemp' : saTemp,
            'saCooling' : saCooling,
            'gaIters' : gaIters,
            'mimicIters' : mimicIters,
            'run' : run
            }

    settings = getSettings(alg, settings, vars)
    if gaPop < gaMate or gaPop < gaMutate or gaMate < gaMutate:
        pebkac({gaPop: 'total population',gaMate : 'mating population', gaMutate : 'mutating population'}, alg, 'total population', settings)
    if mimicSamples < mimicToKeep:
        pebkac({mimicSamples: 'mimic samples', mimicToKeep : 'mimic to keep'}, alg, 'mimic samples', settings)
    prob = 'Traveling Sales Problem'
    invDist = {}
    cities = CityList()
    N = len(cities)
    #random = Random()
    points = [[0 for x in xrange(2)] for x in xrange(N)]
    for i in range(0, len(points)):
        coords = cities.getCoords(i)
        points[i][0] = coords[0]
        points[i][1] = coords[1]
    ef = TravelingSalesmanRouteEvaluationFunction(points)
    odd = DiscretePermutationDistribution(N)
    nf = SwapNeighbor()
    mf = SwapMutation()
    cf = TravelingSalesmanCrossOver(ef)
    hcp = GenericHillClimbingProblem(ef, odd, nf)
    gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf)
    rows = []


    if alg == 'RHC' or alg == 'all':
        print '\n----------------------------------'
        print 'Using Random Hill Climbing'
        for label, setting in settings:
            print label + ":" + str(setting)
        rhc = RandomizedHillClimbing(hcp)
        fit = FixedIterationTrainer(rhc, iterations)
        fit.train()
        path = []
        for x in range(0,N):
            path.append(rhc.getOptimal().getDiscrete(x))
        output(prob, 'RHC', path, points, settings)
        rows = []
        row = []
        row.append("Inverse of Distance")
        row.append(ef.value(rhc.getOptimal()))
        rows.append(row)
        invDist['RHC'] = ef.value(rhc.getOptimal())
        buildFooter(prob, 'RHC', rows, settings)
        outputFooter(prob, 'RHC', rows, settings)


    if alg == 'SA' or alg == 'all':
        print 'Using Simulated Annealing'
        for label, setting in settings:
            print label + ":" + str(setting)
        sa = SimulatedAnnealing(saTemp, saCooling, hcp)
        fit = FixedIterationTrainer(sa, iterations)
        fit.train()
        path = []
        for x in range(0,N):
            path.append(sa.getOptimal().getDiscrete(x))
        output(prob, 'SA', path, points, settings)
        rows = []
        row = []
        row.append("Inverse of Distance")
        row.append(ef.value(sa.getOptimal()))
        rows.append(row)
        invDist['SA'] = ef.value(sa.getOptimal())
        buildFooter(prob, 'SA', rows, settings)
        outputFooter(prob, 'SA', rows, settings)

    if alg == 'GA' or alg == 'all':
        print '\n----------------------------------'
        print 'Using Genetic Algorithm'
        for label, setting in settings:
            print label + ":" + str(setting)
        ga = StandardGeneticAlgorithm(gaPop, gaMate, gaMutate, gap)
        fit = FixedIterationTrainer(ga, gaIters)
        fit.train()
        path = []
        for x in range(0,N):
            path.append(ga.getOptimal().getDiscrete(x))
        output(prob, 'GA', path, points, settings)
        rows = []
        row = []
        row.append("Inverse of Distance")
        row.append(ef.value(ga.getOptimal()))
        rows.append(row)
        invDist['GA'] = ef.value(ga.getOptimal())
        buildFooter(prob, 'GA', rows, settings)
        outputFooter(prob, 'GA', rows, settings)

    if alg == 'MIMIC' or alg == 'all':
        print '\n----------------------------------'
        print 'Using MIMIC'
        for label, setting in settings:
            print label + ":" + str(setting)
        # for mimic we use a sort encoding
        ef = TravelingSalesmanSortEvaluationFunction(points);
        fill = [N] * N
        ranges = array('i', fill)
        odd = DiscreteUniformDistribution(ranges);
        df = DiscreteDependencyTree(.1, ranges);
        pop = GenericProbabilisticOptimizationProblem(ef, odd, df);
        mimic = MIMIC(mimicSamples, mimicToKeep, pop)
        fit = FixedIterationTrainer(mimic, mimicIters)
        fit.train()
        path = []
        optimal = mimic.getOptimal()
        fill = [0] * optimal.size()
        ddata = array('d', fill)
        for i in range(0,len(ddata)):
            ddata[i] = optimal.getContinuous(i)
        order = ABAGAILArrays.indices(optimal.size())
        ABAGAILArrays.quicksort(ddata, order)
        output(prob, 'MIMIC', order, points, settings)
        rows = []
        row = []
        row.append("Inverse of Distance")
        row.append(ef.value(mimic.getOptimal()))
        rows.append(row)
        invDist['MIMIC'] = ef.value(mimic.getOptimal())
        buildFooter(prob, 'MIMIC', rows, settings)
        outputFooter(prob, 'MIMIC', rows, settings)


    maxn = max(len(key) for key in invDist)
    maxd = max(len(str(invDist[key])) for key in invDist)
    print "Results"
    for result in invDist:
        print "%-*s %s %-*s" % (len('Best Alg') + 2, result, ':', maxd, invDist[result])
    if alg == 'all':
        print "%-*s %s %-*s" % (len('Best Alg') + 2, 'Best Alg', ':', maxd, max(invDist.iterkeys(), key=(lambda key: invDist[key])))
    print '----------------------------------'
Esempio n. 6
0
print "GA Inverse of Distance: " + str(ef.value(ga.getOptimal()))
print "Route:"
path = []
for x in range(0, N):
    path.append(ga.getOptimal().getDiscrete(x))
print path


# for mimic we use a sort encoding
ef = TravelingSalesmanSortEvaluationFunction(points)
fill = [N] * N
ranges = array("i", fill)
odd = DiscreteUniformDistribution(ranges)
df = DiscreteDependencyTree(0.1, ranges)
pop = GenericProbabilisticOptimizationProblem(ef, odd, df)

mimic = MIMIC(500, 100, pop)
fit = FixedIterationTrainer(mimic, 1000)
fit.train()
print "MIMIC Inverse of Distance: " + str(ef.value(mimic.getOptimal()))
print "Route:"
path = []
optimal = mimic.getOptimal()
fill = [0] * optimal.size()
ddata = array("d", fill)
for i in range(0, len(ddata)):
    ddata[i] = optimal.getContinuous(i)
order = ABAGAILArrays.indices(optimal.size())
ABAGAILArrays.quicksort(ddata, order)
print order
def travelingsalesmanfunc(N, iterations):

    rhcMult = 1500
    saMult = 1500
    gaMult = 1
    mimicMult = 3

    random = Random()

    points = [[0 for x in xrange(2)] for x in xrange(N)]
    for i in range(0, len(points)):
        points[i][0] = random.nextDouble()
        points[i][1] = random.nextDouble()

    optimalOut = []
    timeOut = []
    evalsOut = []

    for niter in iterations:

        ef = TravelingSalesmanRouteEvaluationFunction(points)
        odd = DiscretePermutationDistribution(N)
        nf = SwapNeighbor()
        mf = SwapMutation()
        cf = TravelingSalesmanCrossOver(ef)
        hcp = GenericHillClimbingProblem(ef, odd, nf)
        gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf)

        iterOptimalOut = [N, niter]
        iterTimeOut = [N, niter]
        iterEvals = [N, niter]

        start = time.time()
        rhc = RandomizedHillClimbing(hcp)
        fit = FixedIterationTrainer(rhc, niter * rhcMult)
        fit.train()
        end = time.time()
        rhcOptimal = ef.value(rhc.getOptimal())
        rhcTime = end - start
        print "RHC Inverse of Distance: optimum: " + str(rhcOptimal)
        print "RHC time: " + str(rhcTime)
        #print "RHC Inverse of Distance: " + str(ef.value(rhc.getOptimal()))
        print "Route:"
        path = []
        for x in range(0, N):
            path.append(rhc.getOptimal().getDiscrete(x))
        print path
        iterOptimalOut.append(rhcOptimal)
        iterTimeOut.append(rhcTime)
        functionEvals = ef.getNumEvals()
        ef.zeroEvals()
        iterEvals.append(functionEvals)

        start = time.time()
        sa = SimulatedAnnealing(1E12, .999, hcp)
        fit = FixedIterationTrainer(sa, niter * saMult)
        fit.train()
        end = time.time()
        saOptimal = ef.value(sa.getOptimal())
        saTime = end - start
        print "SA Inverse of Distance optimum: " + str(saOptimal)
        print "SA time: " + str(saTime)
        #print "SA Inverse of Distance: " + str(ef.value(sa.getOptimal()))
        print "Route:"
        path = []
        for x in range(0, N):
            path.append(sa.getOptimal().getDiscrete(x))
        print path
        iterOptimalOut.append(saOptimal)
        iterTimeOut.append(saTime)
        functionEvals = ef.getNumEvals()
        ef.zeroEvals()
        iterEvals.append(functionEvals)

        start = time.time()
        ga = StandardGeneticAlgorithm(2000, 1500, 250, gap)
        fit = FixedIterationTrainer(ga, niter * gaMult)
        fit.train()
        end = time.time()
        gaOptimal = ef.value(ga.getOptimal())
        gaTime = end - start
        print "GA Inverse of Distance optimum: " + str(gaOptimal)
        print "GA time: " + str(gaTime)
        #print "GA Inverse of Distance: " + str(ef.value(ga.getOptimal()))
        print "Route:"
        path = []
        for x in range(0, N):
            path.append(ga.getOptimal().getDiscrete(x))
        print path
        iterOptimalOut.append(gaOptimal)
        iterTimeOut.append(gaTime)
        functionEvals = ef.getNumEvals()
        ef.zeroEvals()
        iterEvals.append(functionEvals)

        start = time.time()
        # for mimic we use a sort encoding
        ef = TravelingSalesmanSortEvaluationFunction(points)
        fill = [N] * N
        ranges = array('i', fill)
        odd = DiscreteUniformDistribution(ranges)
        df = DiscreteDependencyTree(.1, ranges)
        pop = GenericProbabilisticOptimizationProblem(ef, odd, df)

        start = time.time()
        mimic = MIMIC(500, 100, pop)
        fit = FixedIterationTrainer(mimic, niter * mimicMult)
        fit.train()
        end = time.time()
        mimicOptimal = ef.value(mimic.getOptimal())
        mimicTime = end - start
        print "MIMIC Inverse of Distance optimum: " + str(mimicOptimal)
        print "MIMIC time: " + str(mimicTime)
        #print "MIMIC Inverse of Distance: " + str(ef.value(mimic.getOptimal()))
        print "Route:"
        path = []
        optimal = mimic.getOptimal()
        fill = [0] * optimal.size()
        ddata = array('d', fill)
        for i in range(0, len(ddata)):
            ddata[i] = optimal.getContinuous(i)
        order = ABAGAILArrays.indices(optimal.size())
        ABAGAILArrays.quicksort(ddata, order)
        print order
        iterOptimalOut.append(mimicOptimal)
        iterTimeOut.append(mimicTime)
        functionEvals = ef.getNumEvals()
        ef.zeroEvals()
        iterEvals.append(functionEvals)

        optimalOut.append(iterOptimalOut)
        timeOut.append(iterTimeOut)
        evalsOut.append(iterEvals)

    return [optimalOut, timeOut, evalsOut]