Esempio n. 1
0
def _main(cat_id, example_id):
    from dids import Dataset
    import matplotlib.pyplot as plt
    from util3d.mayavi_vis import vis_point_cloud
    from mayavi import mlab

    colors = (
        (1, 0, 0),
        (0, 1, 0),
        (0, 0, 1),
        (1, 1, 1),
    )

    image_ds = SegmentedImageDataset(cat_id)
    pc_ds = PointCloudDataset(cat_id)
    s_ds = SegmentationDataset(cat_id)
    ds = Dataset.zip(image_ds, pc_ds, s_ds)
    with ds:
        image, pc, s = ds[example_id]
        print(np.min(s))
        print(np.max(s))
        ns = np.max(s) + 1
        plt.imshow(image)
        for i in range(ns - 1):
            cloud = pc[s == i + 1]
            color = colors[i % len(colors)]
            vis_point_cloud(cloud, color=color, scale_factor=0.02)
        plt.show(block=False)
        mlab.show()
Esempio n. 2
0
 def vis(image, cloud):
     import matplotlib.pyplot as plt
     from util3d.mayavi_vis import vis_point_cloud, mlab
     plt.imshow(image)
     plt.show(block=False)
     vis_point_cloud(
         cloud, axis_order='xzy', color=(0, 0, 1), scale_factor=0.02)
     mlab.show()
     plt.close()
Esempio n. 3
0
 def vis(image, cloud):
     import matplotlib.pyplot as plt
     from mayavi import mlab
     from util3d.mayavi_vis import vis_point_cloud
     plt.imshow(image)
     vis_point_cloud(cloud, color=(0, 0, 1), scale_factor=0.01)
     plt.show(block=False)
     mlab.show()
     plt.close()
Esempio n. 4
0
def vis(mesh, cloud):
    import numpy as np
    from util3d.mayavi_vis import vis_mesh, vis_point_cloud
    from mayavi import mlab
    vertices, faces = (np.array(mesh[k]) for k in ('vertices', 'faces'))
    vis_mesh(vertices, faces, color=(0, 0, 1), axis_order='xzy')
    vis_point_cloud(np.array(cloud),
                    color=(0, 1, 0),
                    scale_factor=0.01,
                    axis_order='xzy')
    mlab.show()
Esempio n. 5
0
 def vis_example_data(self, feature_data, label_data):
     import matplotlib.pyplot as plt
     from util3d.mayavi_vis import vis_point_cloud
     from mayavi import mlab
     image = feature_data['image']
     point_cloud = label_data
     image -= np.min(image)
     image /= np.max(image)
     plt.imshow(image)
     plt.show(block=False)
     vis_point_cloud(point_cloud, color=(0, 0, 1), scale_factor=0.01)
     mlab.show()
     plt.close()
Esempio n. 6
0
def vis(cloud):
    from mayavi import mlab
    from util3d.mayavi_vis import vis_point_cloud, vis_normals
    import numpy as np
    if hasattr(cloud, 'keys'):
        points = np.array(cloud['points'])
        normals = np.array(cloud['normals'])
    else:
        points = np.array(cloud)
        normals = None
    vis_point_cloud(points, scale_factor=0.01)
    if normals is not None:
        vis_normals(points, normals, scale_factor=0.002)
    mlab.show()
Esempio n. 7
0
def vis_clouds(model_id,
               pre_sampled=True,
               n_samples=1024,
               edge_length_threshold=0.1,
               shuffle=False):
    import random
    import numpy as np
    from mayavi import mlab
    import matplotlib.pyplot as plt
    from dids import Dataset
    from shapenet.core.blender_renderings.config import RenderConfig
    from shapenet.core.meshes import get_mesh_dataset
    from util3d.mayavi_vis import vis_point_cloud
    from util3d.mayavi_vis import vis_mesh
    from template_ffd.data.ids import get_example_ids
    from template_ffd.inference.clouds import get_inferred_cloud_dataset
    from template_ffd.model import get_builder
    builder = get_builder(model_id)
    cat_id = builder.cat_id
    kwargs = dict(model_id=model_id, n_samples=n_samples)
    if not pre_sampled:
        kwargs['edge_length_threshold'] = edge_length_threshold
    cloud_dataset = get_inferred_cloud_dataset(pre_sampled=pre_sampled,
                                               **kwargs)
    image_dataset = RenderConfig().get_dataset(cat_id, builder.view_index)

    example_ids = get_example_ids(cat_id, 'eval')
    if shuffle:
        example_ids = list(example_ids)
        random.shuffle(example_ids)
    mesh_dataset = get_mesh_dataset(cat_id)
    zipped_dataset = Dataset.zip(image_dataset, cloud_dataset, mesh_dataset)
    # zipped_dataset = Dataset.zip(image_dataset, cloud_dataset)
    with zipped_dataset:
        for example_id in example_ids:
            image, cloud, mesh = zipped_dataset[example_id]
            # image, cloud = zipped_dataset[example_id]
            plt.imshow(image)
            vis_point_cloud(np.array(cloud),
                            color=(0, 1, 0),
                            scale_factor=0.01)
            v, f = (np.array(mesh[k]) for k in ('vertices', 'faces'))
            vis_mesh(v,
                     f,
                     color=(0, 0, 1),
                     opacity=0.1,
                     include_wireframe=False)
            plt.show(block=False)
            mlab.show()
            plt.close()
Esempio n. 8
0
def vis_clouds(
        model_id, pre_sampled=True, n_samples=1024, edge_length_threshold=0.1,
        shuffle=False):
    import random
    import numpy as np
    from mayavi import mlab
    import matplotlib.pyplot as plt
    from dids import Dataset
    from shapenet.core.blender_renderings.config import RenderConfig
    from shapenet.core.meshes import get_mesh_dataset
    from util3d.mayavi_vis import vis_point_cloud
    from util3d.mayavi_vis import vis_mesh
    from template_ffd.data.ids import get_example_ids
    from template_ffd.inference.clouds import get_inferred_cloud_dataset
    from template_ffd.model import get_builder
    builder = get_builder(model_id)
    cat_id = builder.cat_id
    kwargs = dict(model_id=model_id, n_samples=n_samples)
    if not pre_sampled:
        kwargs['edge_length_threshold'] = edge_length_threshold
    cloud_dataset = get_inferred_cloud_dataset(
        pre_sampled=pre_sampled, **kwargs)
    image_dataset = RenderConfig().get_dataset(cat_id, builder.view_index)

    example_ids = get_example_ids(cat_id, 'eval')
    if shuffle:
        example_ids = list(example_ids)
        random.shuffle(example_ids)
    mesh_dataset = get_mesh_dataset(cat_id)
    zipped_dataset = Dataset.zip(image_dataset, cloud_dataset, mesh_dataset)
    # zipped_dataset = Dataset.zip(image_dataset, cloud_dataset)
    with zipped_dataset:
        for example_id in example_ids:
            image, cloud, mesh = zipped_dataset[example_id]
            # image, cloud = zipped_dataset[example_id]
            plt.imshow(image)
            vis_point_cloud(
                np.array(cloud), color=(0, 1, 0), scale_factor=0.01)
            v, f = (np.array(mesh[k]) for k in ('vertices', 'faces'))
            vis_mesh(
                v, f, color=(0, 0, 1), opacity=0.1, include_wireframe=False)
            plt.show(block=False)
            mlab.show()
            plt.close()
Esempio n. 9
0
def vis(cat_desc, regime='e', shuffle=True):
    import matplotlib.pyplot as plt
    from mayavi import mlab
    from util3d.mayavi_vis import vis_point_cloud, vis_voxels

    all_ds = get_ds(cat_desc, regime)
    cat_id = cat_desc_to_id(cat_desc)
    example_ids = list(get_example_ids(cat_id, 'eval'))
    random.shuffle(example_ids)

    def vis_mesh(mesh, include_wireframe=False, **kwargs):
        from util3d.mayavi_vis import vis_mesh as vm
        v, f = (np.array(mesh[k]) for k in ('vertices', 'faces'))
        vm(v, f, include_wireframe=include_wireframe, **kwargs)

    with all_ds:
        for example_id in example_ids:
            print(example_id)
            image, gt_mesh, cloud, mesh, voxels, template_mesh = \
                all_ds[example_id]
            plt.imshow(image)
            mlab.figure()
            vis_mesh(gt_mesh, color=(0, 0, 1))
            mlab.figure()
            vis_mesh(mesh, color=(0, 1, 0))
            mlab.figure()
            vis_mesh(template_mesh, color=(1, 0, 0))
            mlab.figure()
            vis_point_cloud(np.array(cloud),
                            scale_factor=0.01,
                            color=(0, 1, 0))
            mlab.figure()
            vis_voxels(voxels.data, color=(0, 1, 0))

            plt.show(block=False)
            mlab.show()
            plt.close()
 def vis_example_data(self, feature_data, label_data):
     import matplotlib.pyplot as plt
     from shapenet.core import cat_id_to_desc
     from util3d.mayavi_vis import vis_point_cloud
     from mayavi import mlab
     image = feature_data['image']
     point_cloud = label_data
     image -= np.min(image)
     image /= np.max(image)
     plt.imshow(image)
     cat_ids = self.cat_id
     cat_index = feature_data['cat_index']
     if isinstance(cat_ids, str):
         assert(cat_index == 0)
         cat_id = cat_ids
     else:
         cat_id = cat_ids[cat_index]
     plt.title('%s: %s' %
               (cat_id_to_desc(cat_id), feature_data['example_id']))
     plt.show(block=False)
     vis_point_cloud(
         point_cloud, color=(0, 0, 1), scale_factor=0.01, axis_order='xzy')
     mlab.show()
     plt.close()
Esempio n. 11
0
def vis(cat_desc, regime='e', shuffle=True):
    import matplotlib.pyplot as plt
    from mayavi import mlab
    from util3d.mayavi_vis import vis_point_cloud, vis_voxels

    all_ds = get_ds(cat_desc, regime)
    cat_id = cat_desc_to_id(cat_desc)
    example_ids = list(get_example_ids(cat_id, 'eval'))
    random.shuffle(example_ids)

    def vis_mesh(mesh, include_wireframe=False, **kwargs):
        from util3d.mayavi_vis import vis_mesh as vm
        v, f = (np.array(mesh[k]) for k in ('vertices', 'faces'))
        vm(v, f, include_wireframe=include_wireframe, **kwargs)

    with all_ds:
        for example_id in example_ids:
            print(example_id)
            image, gt_mesh, cloud, mesh, voxels, template_mesh = \
                all_ds[example_id]
            plt.imshow(image)
            mlab.figure()
            vis_mesh(gt_mesh, color=(0, 0, 1))
            mlab.figure()
            vis_mesh(mesh, color=(0, 1, 0))
            mlab.figure()
            vis_mesh(template_mesh, color=(1, 0, 0))
            mlab.figure()
            vis_point_cloud(
                np.array(cloud), scale_factor=0.01, color=(0, 1, 0))
            mlab.figure()
            vis_voxels(voxels.data, color=(0, 1, 0))

            plt.show(block=False)
            mlab.show()
            plt.close()
Esempio n. 12
0
    def map_np(self, example_id):
        points = np.array(self._dataset[example_id], dtype=np.float32)
        return sample_points(points, self._n_resamples, axis=0)


def get_sampled_point_cloud_dataset(
        cat_id, example_ids, n_samples, n_resamples):
    manager = SampledPointCloudManager(cat_id, n_samples, n_resamples)
    base = base_dataset(example_ids)
    return base.map(manager.map_tf)


if __name__ == '__main__':
    from mayavi import mlab
    from util3d.mayavi_vis import vis_point_cloud
    from shapenet.core import cat_desc_to_id, get_example_ids
    cat_desc = 'plane'
    n_samples = 16384
    # n_resamples = None
    n_resamples = 1024
    cat_id = cat_desc_to_id(cat_desc)
    example_ids = get_example_ids(cat_id)
    dataset = get_sampled_point_cloud_dataset(
        cat_id, example_ids, n_samples, n_resamples)
    pc = dataset.make_one_shot_iterator().get_next()
    with tf.train.MonitoredSession() as sess:
        while not sess.should_stop():
            cloud = sess.run(pc)
            vis_point_cloud(cloud, color=(0, 0, 1), scale_factor=0.01)
            mlab.show()
Esempio n. 13
0
cat_desc = 'plane'
n_points = 16384
cat_id = cat_desc_to_id(cat_desc)

show_normals = True
if vis_normals:
    dataset = get_cloud_normal_dataset(cat_id, n_points)
else:
    dataset = get_point_cloud_dataset(cat_id, n_points)

with dataset:
    for example_id in dataset:
        data = dataset[example_id]
        s = random.sample(range(n_points), 1024)
        if show_normals:
            cloud = np.array(data['points'])
            normals = np.array(data['normals'])
            cloud = cloud[s]
            normals = normals[s]
        else:
            cloud = np.array(data)
            normals = None
            cloud = cloud[s]
        vis_point_cloud(cloud,
                        axis_order='xzy',
                        color=(0, 0, 1),
                        scale_factor=0.002)
        if normals is not None:
            vis_normals(cloud, normals, scale_factor=0.01, axis_order='xzy')
        mlab.show()
Esempio n. 14
0
 def test_surface_voxels():
     point_cloud = voxels_to_point_cloud(get_surface_voxels(voxels))
     vis_point_cloud(point_cloud[:len(point_cloud) // 2], color=(0, 0, 1))
     mlab.show()
Esempio n. 15
0
        return example_id
    else:
        return None


alignments = alignments.map_keys(key_map_fn, inverse_map_fn)

zipped = ZippedDataset(clouds, alignments)


def transform(vals):
    cloud, alignment = vals
    R = euler_matrix(0, 0, (1 - alignment) * np.pi / 2)[:3, :3]
    return np.matmul(np.array(cloud), R)


aligned = zipped.map(transform)

with aligned:
    for k in aligned:
        cloud = aligned[k]
        vis_point_cloud(cloud, color=(0, 0, 1), scale_factor=0.01)
        mlab.show()

# with zipped:
#     print(len(tuple(zipped)))
#     print(len(tuple(alignments)))
#     print(len(tuple(clouds)))
#     for k in zipped:
#         cloud, alignment = zipped[k]