def main(): with timer('load data'): df = pd.read_csv(TRAIN_PATH) df["loc_x"] = df["loc_x"] / 100 df["loc_y"] = df["loc_y"] / 100 y = df[TARGET_COLUMNS].values df = df[[ID_COLUMNS]] gc.collect() with timer("split data"): folds = StratifiedKFold(n_splits=5, shuffle=True, random_state=0).split(df, y) for n_fold, (train_index, val_index) in enumerate(folds): train_df = df.loc[train_index] val_df = df.loc[val_index] y_train = y[train_index] y_val = y[val_index] if n_fold == fold_id: break with timer('preprocessing'): train_augmentation = Compose([ HorizontalFlip(p=0.5), OneOf([ ElasticTransform(p=0.5, alpha=120, sigma=120 * 0.05, alpha_affine=120 * 0.03), GridDistortion(p=0.5), OpticalDistortion(p=1, distort_limit=2, shift_limit=0.5) ], p=0.5), RandomBrightnessContrast(p=0.5), ShiftScaleRotate(rotate_limit=20, p=0.5), Resize(img_size, img_size, p=1) ]) val_augmentation = Compose([ Resize(img_size, img_size, p=1) ]) train_dataset = KDDataset(train_df, y_train, img_size, IMAGE_PATH, id_colname=ID_COLUMNS, transforms=train_augmentation) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True) val_dataset = KDDataset(val_df, y_val, img_size, IMAGE_PATH, id_colname=ID_COLUMNS, transforms=val_augmentation) val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True) del df, train_dataset, val_dataset gc.collect() with timer('create model'): model = CnnModel(num_classes=N_CLASSES, encoder="se_resnext50_32x4d", pretrained="../input/pytorch-pretrained-models/se_resnext50_32x4d-a260b3a4.pth", pool_type="avg") if model_path is not None: model.load_state_dict(torch.load(model_path)) model.to(device) criterion = torch.nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters(), lr=1e-4, eps=1e-4) # model, optimizer = amp.initialize(model, optimizer, opt_level="O1", verbosity=0) with timer('train'): best_score = 0 for epoch in range(1, epochs + 1): seed_torch(SEED + epoch) if epoch == epochs - 3: for param_group in optimizer.param_groups: param_group['lr'] = param_group['lr'] * 0.1 LOGGER.info("Starting {} epoch...".format(epoch)) tr_loss = train_one_epoch(model, train_loader, criterion, optimizer, device, N_CLASSES) LOGGER.info('Mean train loss: {}'.format(round(tr_loss, 5))) y_pred, target, val_loss = validate(model, val_loader, criterion, device, N_CLASSES) score = roc_auc_score(target, y_pred) LOGGER.info('Mean val loss: {}'.format(round(val_loss, 5))) LOGGER.info('val score: {}'.format(round(score, 5))) if score > best_score: best_score = score np.save("y_pred.npy", y_pred) torch.save(model.state_dict(), save_path) np.save("target.npy", target) with timer('predict'): test_df = pd.read_csv(TEST_PATH) test_ids = test_df["id"].values test_augmentation = Compose([ Resize(img_size, img_size, p=1) ]) test_dataset = KDDatasetTest(test_df, img_size, TEST_IMAGE_PATH, id_colname=ID_COLUMNS, transforms=test_augmentation, n_tta=2) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True) model.load_state_dict(torch.load(save_path)) pred = predict(model, test_loader, device, N_CLASSES, n_tta=2) print(pred.shape) results = pd.DataFrame({"id": test_ids, "is_star": pred.reshape(-1)}) results.to_csv("results.csv", index=False)
# =============== # Settings # =============== SEED = np.random.randint(100000) device = "cuda" img_size = 224 batch_size = 32 fold_id = 0 epochs = 20 EXP_ID = "exp1_seresnext" model_path = None save_path = '{}_fold{}.pth'.format(EXP_ID, fold_id) setup_logger(out_file=LOGGER_PATH) seed_torch(SEED) LOGGER.info("seed={}".format(SEED)) @contextmanager def timer(name): t0 = time.time() yield LOGGER.info('[{}] done in {} s'.format(name, round(time.time() - t0, 2))) def main(): with timer('load data'): df = pd.read_csv(TRAIN_PATH) df["loc_x"] = df["loc_x"] / 100 df["loc_y"] = df["loc_y"] / 100