def main(): import global_def from optparse import OptionParser from EMAN2 import EMUtil import os import sys from time import time progname = os.path.basename(sys.argv[0]) usage = progname + " proj_stack output_averages --MPI" parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--img_per_group", type="int", default=100, help="number of images per group") parser.add_option("--radius", type="int", default=-1, help="radius for alignment") parser.add_option( "--xr", type="string", default="2 1", help="range for translation search in x direction, search is +/xr") parser.add_option( "--yr", type="string", default="-1", help= "range for translation search in y direction, search is +/yr (default = same as xr)" ) parser.add_option( "--ts", type="string", default="1 0.5", help= "step size of the translation search in both directions, search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional" ) parser.add_option( "--iter", type="int", default=30, help="number of iterations within alignment (default = 30)") parser.add_option( "--num_ali", type="int", default=5, help="number of alignments performed for stability (default = 5)") parser.add_option("--thld_err", type="float", default=1.0, help="threshold of pixel error (default = 1.732)") parser.add_option( "--grouping", type="string", default="GRP", help= "do grouping of projections: PPR - per projection, GRP - different size groups, exclusive (default), GEV - grouping equal size" ) parser.add_option( "--delta", type="float", default=-1.0, help="angular step for reference projections (required for GEV method)" ) parser.add_option( "--fl", type="float", default=0.3, help="cut-off frequency of hyperbolic tangent low-pass Fourier filter") parser.add_option( "--aa", type="float", default=0.2, help="fall-off of hyperbolic tangent low-pass Fourier filter") parser.add_option("--CTF", action="store_true", default=False, help="Consider CTF correction during the alignment ") parser.add_option("--MPI", action="store_true", default=False, help="use MPI version") (options, args) = parser.parse_args() from mpi import mpi_init, mpi_comm_rank, mpi_comm_size, MPI_COMM_WORLD from mpi import mpi_barrier, mpi_send, mpi_recv, mpi_bcast, MPI_INT, mpi_finalize, MPI_FLOAT from applications import MPI_start_end, within_group_refinement, ali2d_ras from pixel_error import multi_align_stability from utilities import send_EMData, recv_EMData from utilities import get_image, bcast_number_to_all, set_params2D, get_params2D from utilities import group_proj_by_phitheta, model_circle, get_input_from_string sys.argv = mpi_init(len(sys.argv), sys.argv) myid = mpi_comm_rank(MPI_COMM_WORLD) number_of_proc = mpi_comm_size(MPI_COMM_WORLD) main_node = 0 if len(args) == 2: stack = args[0] outdir = args[1] else: ERROR("incomplete list of arguments", "sxproj_stability", 1, myid=myid) exit() if not options.MPI: ERROR("Non-MPI not supported!", "sxproj_stability", myid=myid) exit() if global_def.CACHE_DISABLE: from utilities import disable_bdb_cache disable_bdb_cache() global_def.BATCH = True #if os.path.exists(outdir): ERROR('Output directory exists, please change the name and restart the program', "sxproj_stability", 1, myid) #mpi_barrier(MPI_COMM_WORLD) img_per_grp = options.img_per_group radius = options.radius ite = options.iter num_ali = options.num_ali thld_err = options.thld_err xrng = get_input_from_string(options.xr) if options.yr == "-1": yrng = xrng else: yrng = get_input_from_string(options.yr) step = get_input_from_string(options.ts) if myid == main_node: nima = EMUtil.get_image_count(stack) img = get_image(stack) nx = img.get_xsize() ny = img.get_ysize() else: nima = 0 nx = 0 ny = 0 nima = bcast_number_to_all(nima) nx = bcast_number_to_all(nx) ny = bcast_number_to_all(ny) if radius == -1: radius = nx / 2 - 2 mask = model_circle(radius, nx, nx) st = time() if options.grouping == "GRP": if myid == main_node: print " A ", myid, " ", time() - st proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") proj_params = [] for i in xrange(nima): dp = proj_attr[i].get_params("spider") phi, theta, psi, s2x, s2y = dp["phi"], dp["theta"], dp[ "psi"], -dp["tx"], -dp["ty"] proj_params.append([phi, theta, psi, s2x, s2y]) # Here is where the grouping is done, I didn't put enough annotation in the group_proj_by_phitheta, # So I will briefly explain it here # proj_list : Returns a list of list of particle numbers, each list contains img_per_grp particle numbers # except for the last one. Depending on the number of particles left, they will either form a # group or append themselves to the last group # angle_list : Also returns a list of list, each list contains three numbers (phi, theta, delta), (phi, # theta) is the projection angle of the center of the group, delta is the range of this group # mirror_list: Also returns a list of list, each list contains img_per_grp True or False, which indicates # whether it should take mirror position. # In this program angle_list and mirror list are not of interest. proj_list_all, angle_list, mirror_list = group_proj_by_phitheta( proj_params, img_per_grp=img_per_grp) del proj_params print " B number of groups ", myid, " ", len( proj_list_all), time() - st mpi_barrier(MPI_COMM_WORLD) # Number of groups, actually there could be one or two more groups, since the size of the remaining group varies # we will simply assign them to main node. n_grp = nima / img_per_grp - 1 # Divide proj_list_all equally to all nodes, and becomes proj_list proj_list = [] for i in xrange(n_grp): proc_to_stay = i % number_of_proc if proc_to_stay == main_node: if myid == main_node: proj_list.append(proj_list_all[i]) elif myid == main_node: mpi_send(len(proj_list_all[i]), 1, MPI_INT, proc_to_stay, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) mpi_send(proj_list_all[i], len(proj_list_all[i]), MPI_INT, proc_to_stay, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) elif myid == proc_to_stay: img_per_grp = mpi_recv(1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) img_per_grp = int(img_per_grp[0]) temp = mpi_recv(img_per_grp, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) proj_list.append(map(int, temp)) del temp mpi_barrier(MPI_COMM_WORLD) print " C ", myid, " ", time() - st if myid == main_node: # Assign the remaining groups to main_node for i in xrange(n_grp, len(proj_list_all)): proj_list.append(proj_list_all[i]) del proj_list_all, angle_list, mirror_list # Compute stability per projection projection direction, equal number assigned, thus overlaps elif options.grouping == "GEV": if options.delta == -1.0: ERROR( "Angular step for reference projections is required for GEV method", "sxproj_stability", 1) from utilities import even_angles, nearestk_to_refdir, getvec refproj = even_angles(options.delta) img_begin, img_end = MPI_start_end(len(refproj), number_of_proc, myid) # Now each processor keeps its own share of reference projections refprojdir = refproj[img_begin:img_end] del refproj ref_ang = [0.0] * (len(refprojdir) * 2) for i in xrange(len(refprojdir)): ref_ang[i * 2] = refprojdir[0][0] ref_ang[i * 2 + 1] = refprojdir[0][1] + i * 0.1 print " A ", myid, " ", time() - st proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") # the solution below is very slow, do not use it unless there is a problem with the i/O """ for i in xrange(number_of_proc): if myid == i: proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") mpi_barrier(MPI_COMM_WORLD) """ print " B ", myid, " ", time() - st proj_ang = [0.0] * (nima * 2) for i in xrange(nima): dp = proj_attr[i].get_params("spider") proj_ang[i * 2] = dp["phi"] proj_ang[i * 2 + 1] = dp["theta"] print " C ", myid, " ", time() - st asi = Util.nearestk_to_refdir(proj_ang, ref_ang, img_per_grp) del proj_ang, ref_ang proj_list = [] for i in xrange(len(refprojdir)): proj_list.append(asi[i * img_per_grp:(i + 1) * img_per_grp]) del asi print " D ", myid, " ", time() - st #from sys import exit #exit() # Compute stability per projection elif options.grouping == "PPR": print " A ", myid, " ", time() - st proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") print " B ", myid, " ", time() - st proj_params = [] for i in xrange(nima): dp = proj_attr[i].get_params("spider") phi, theta, psi, s2x, s2y = dp["phi"], dp["theta"], dp[ "psi"], -dp["tx"], -dp["ty"] proj_params.append([phi, theta, psi, s2x, s2y]) img_begin, img_end = MPI_start_end(nima, number_of_proc, myid) print " C ", myid, " ", time() - st from utilities import nearest_proj proj_list, mirror_list = nearest_proj( proj_params, img_per_grp, range(img_begin, img_begin + 1)) #range(img_begin, img_end)) refprojdir = proj_params[img_begin:img_end] del proj_params, mirror_list print " D ", myid, " ", time() - st else: ERROR("Incorrect projection grouping option", "sxproj_stability", 1) """ from utilities import write_text_file for i in xrange(len(proj_list)): write_text_file(proj_list[i],"projlist%06d_%04d"%(i,myid)) """ ########################################################################################################### # Begin stability test from utilities import get_params_proj, read_text_file #if myid == 0: # from utilities import read_text_file # proj_list[0] = map(int, read_text_file("lggrpp0.txt")) from utilities import model_blank aveList = [model_blank(nx, ny)] * len(proj_list) if options.grouping == "GRP": refprojdir = [[0.0, 0.0, -1.0]] * len(proj_list) for i in xrange(len(proj_list)): print " E ", myid, " ", time() - st class_data = EMData.read_images(stack, proj_list[i]) #print " R ",myid," ",time()-st if options.CTF: from filter import filt_ctf for im in xrange(len(class_data)): # MEM LEAK!! atemp = class_data[im].copy() btemp = filt_ctf(atemp, atemp.get_attr("ctf"), binary=1) class_data[im] = btemp #class_data[im] = filt_ctf(class_data[im], class_data[im].get_attr("ctf"), binary=1) for im in class_data: try: t = im.get_attr( "xform.align2d") # if they are there, no need to set them! except: try: t = im.get_attr("xform.projection") d = t.get_params("spider") set_params2D(im, [0.0, -d["tx"], -d["ty"], 0, 1.0]) except: set_params2D(im, [0.0, 0.0, 0.0, 0, 1.0]) #print " F ",myid," ",time()-st # Here, we perform realignment num_ali times all_ali_params = [] for j in xrange(num_ali): if (xrng[0] == 0.0 and yrng[0] == 0.0): avet = ali2d_ras(class_data, randomize=True, ir=1, ou=radius, rs=1, step=1.0, dst=90.0, maxit=ite, check_mirror=True, FH=options.fl, FF=options.aa) else: avet = within_group_refinement(class_data, mask, True, 1, radius, 1, xrng, yrng, step, 90.0, ite, options.fl, options.aa) ali_params = [] for im in xrange(len(class_data)): alpha, sx, sy, mirror, scale = get_params2D(class_data[im]) ali_params.extend([alpha, sx, sy, mirror]) all_ali_params.append(ali_params) #aveList[i] = avet #print " G ",myid," ",time()-st del ali_params # We determine the stability of this group here. # stable_set contains all particles deemed stable, it is a list of list # each list has two elements, the first is the pixel error, the second is the image number # stable_set is sorted based on pixel error #from utilities import write_text_file #write_text_file(all_ali_params, "all_ali_params%03d.txt"%myid) stable_set, mir_stab_rate, average_pix_err = multi_align_stability( all_ali_params, 0.0, 10000.0, thld_err, False, 2 * radius + 1) #print " H ",myid," ",time()-st if (len(stable_set) > 5): stable_set_id = [] members = [] pix_err = [] # First put the stable members into attr 'members' and 'pix_err' for s in stable_set: # s[1] - number in this subset stable_set_id.append(s[1]) # the original image number members.append(proj_list[i][s[1]]) pix_err.append(s[0]) # Then put the unstable members into attr 'members' and 'pix_err' from fundamentals import rot_shift2D avet.to_zero() if options.grouping == "GRP": aphi = 0.0 atht = 0.0 vphi = 0.0 vtht = 0.0 l = -1 for j in xrange(len(proj_list[i])): # Here it will only work if stable_set_id is sorted in the increasing number, see how l progresses if j in stable_set_id: l += 1 avet += rot_shift2D(class_data[j], stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], stable_set[l][2][3]) if options.grouping == "GRP": phi, theta, psi, sxs, sys = get_params_proj( class_data[j]) if (theta > 90.0): phi = (phi + 540.0) % 360.0 theta = 180.0 - theta aphi += phi atht += theta vphi += phi * phi vtht += theta * theta else: members.append(proj_list[i][j]) pix_err.append(99999.99) aveList[i] = avet.copy() if l > 1: l += 1 aveList[i] /= l if options.grouping == "GRP": aphi /= l atht /= l vphi = (vphi - l * aphi * aphi) / l vtht = (vtht - l * atht * atht) / l from math import sqrt refprojdir[i] = [ aphi, atht, (sqrt(max(vphi, 0.0)) + sqrt(max(vtht, 0.0))) / 2.0 ] # Here more information has to be stored, PARTICULARLY WHAT IS THE REFERENCE DIRECTION aveList[i].set_attr('members', members) aveList[i].set_attr('refprojdir', refprojdir[i]) aveList[i].set_attr('pixerr', pix_err) else: print " empty group ", i, refprojdir[i] aveList[i].set_attr('members', [-1]) aveList[i].set_attr('refprojdir', refprojdir[i]) aveList[i].set_attr('pixerr', [99999.]) del class_data if myid == main_node: km = 0 for i in xrange(number_of_proc): if i == main_node: for im in xrange(len(aveList)): aveList[im].write_image(args[1], km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nl = int(nl[0]) for im in xrange(nl): ave = recv_EMData(i, im + i + 70000) nm = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nm = int(nm[0]) members = mpi_recv(nm, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('members', map(int, members)) members = mpi_recv(nm, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('pixerr', map(float, members)) members = mpi_recv(3, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('refprojdir', map(float, members)) ave.write_image(args[1], km) km += 1 else: mpi_send(len(aveList), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) for im in xrange(len(aveList)): send_EMData(aveList[im], main_node, im + myid + 70000) members = aveList[im].get_attr('members') mpi_send(len(members), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) mpi_send(members, len(members), MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) members = aveList[im].get_attr('pixerr') mpi_send(members, len(members), MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) try: members = aveList[im].get_attr('refprojdir') mpi_send(members, 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) except: mpi_send([-999.0, -999.0, -999.0], 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) global_def.BATCH = False mpi_barrier(MPI_COMM_WORLD) from mpi import mpi_finalize mpi_finalize()
def main(): import os import sys from optparse import OptionParser from global_def import SPARXVERSION import global_def arglist = [] for arg in sys.argv: arglist.append(arg) progname = os.path.basename(arglist[0]) usage2 = progname + """ inputfile outputfile [options] Functionalities: 1. Helicise input volume and save the result to output volume: sxhelicon_utils.py input_vol.hdf output_vol.hdf --helicise --dp=27.6 --dphi=166.5 --fract=0.65 --rmax=70 --rmin=1 --apix=1.84 --sym=D1 2. Helicise pdb file and save the result to a new pdb file: sxhelicon_utils.py input.pdb output.pdb --helicisepdb --dp=27.6 --dphi=166.5 --nrepeats --apix=1.84 3. Generate two lists of image indices used to split segment stack into halves for helical fsc calculation. sxhelicon_utils.py bdb:big_stack --hfsc='flst' --filament_attr=filament 4. Map of filament distribution in the stack sxhelicon_utils.py bdb:big_stack --filinfo=info.txt The output file will contain four columns: 1 2 3 4 first image number last image number number of images in the filament name 5. Predict segments' orientation parameters based on distances between segments and known helical symmetry sxhelicon_utils.py bdb:big_stack --predict_helical=helical_params.txt --dp=27.6 --dphi=166.5 --apix=1.84 6. Generate disks from filament based reconstructions: sxheader.py stk.hdf --params=xform.projection --import=params.txt mpirun -np 2 sxhelicon_utils.py stk.hdf --gendisk='bdb:disk' --ref_nx=100 --ref_ny=100 --ref_nz=200 --apix=1.84 --dp=27.6 --dphi=166.715 --fract=0.67 --rmin=0 --rmax=64 --function="[.,nofunc,helical3c]" --sym="c1" --MPI 7. Stack disks based on helical symmetry parameters sxhelicon_utils.py disk_to_stack.hdf --stackdisk=stacked_disks.hdf --dphi=166.5 --dp=27.6 --ref_nx=160 --ref_ny=160 --ref_nz=225 --apix=1.84 8. Helical symmetry search: mpirun -np 3 sxhelicon_utils.py volf0010.hdf outsymsearch --symsearch --dp=27.6 --dphi=166.715 --apix=1.84 --fract=0.65 --rmin=0 --rmax=92.0 --datasym=datasym.txt --dp_step=0.92 --ndp=3 --dphi_step=1.0 --ndphi=10 --MPI """ parser = OptionParser(usage2, version=SPARXVERSION) #parser.add_option("--ir", type="float", default= -1, help="inner radius for rotational correlation > 0 (set to 1) (Angstroms)") parser.add_option( "--ou", type="float", default=-1, help= "outer radius for rotational 2D correlation < int(nx/2)-1 (set to the radius of the particle) (Angstroms)" ) parser.add_option( "--rs", type="int", default=1, help="step between rings in rotational correlation >0 (set to 1)") parser.add_option( "--xr", type="string", default="4 2 1 1 1", help= "range for translation search in x direction, search is +/-xr (Angstroms) " ) parser.add_option( "--txs", type="string", default="1 1 1 0.5 0.25", help= "step size of the translation search in x directions, search is -xr, -xr+ts, 0, xr-ts, xr (Angstroms)" ) parser.add_option("--delta", type="string", default="10 6 4 3 2", help="angular step of reference projections") parser.add_option("--an", type="string", default="-1", help="angular neighborhood for local searches") parser.add_option( "--maxit", type="int", default=30, help= "maximum number of iterations performed for each angular step (set to 30) " ) parser.add_option("--CTF", action="store_true", default=False, help="CTF correction") parser.add_option("--snr", type="float", default=1.0, help="Signal-to-Noise Ratio of the data") parser.add_option("--MPI", action="store_true", default=False, help="use MPI version") #parser.add_option("--fourvar", action="store_true", default=False, help="compute Fourier variance") parser.add_option("--apix", type="float", default=-1.0, help="pixel size in Angstroms") parser.add_option("--dp", type="float", default=-1.0, help="delta z - translation in Angstroms") parser.add_option("--dphi", type="float", default=-1.0, help="delta phi - rotation in degrees") parser.add_option("--rmin", type="float", default=0.0, help="minimal radius for hsearch (Angstroms)") parser.add_option("--rmax", type="float", default=80.0, help="maximal radius for hsearch (Angstroms)") parser.add_option("--fract", type="float", default=0.7, help="fraction of the volume used for helical search") parser.add_option("--sym", type="string", default="c1", help="symmetry of the structure") parser.add_option("--function", type="string", default="helical", help="name of the reference preparation function") parser.add_option("--npad", type="int", default=2, help="padding size for 3D reconstruction") parser.add_option("--debug", action="store_true", default=False, help="debug") parser.add_option("--volalixshift", action="store_true", default=False, help="Use volalixshift refinement") parser.add_option( "--searchxshift", type="float", default=0.0, help= "search range for x-shift determination: +/- searchxshift (Angstroms)") parser.add_option( "--nearby", type="float", default=6.0, help= "neighborhood within which to search for peaks in 1D ccf for x-shift search (Angstroms)" ) # filinfo parser.add_option( "--filinfo", type="string", default="", help= "Store in an output text file infomration about distribution of filaments in the stack." ) # diskali parser.add_option("--diskali", action="store_true", default=False, help="volume alignment") parser.add_option( "--zstep", type="float", default=1, help="Step size for translational search along z (Angstroms)") # helicise parser.add_option( "--helicise", action="store_true", default=False, help="helicise input volume and save results to output volume") parser.add_option( "--hfsc", type="string", default="", help= "Generate two lists of image indices used to split segment stack into halves for helical fsc calculation. The lists will be stored in two text files named using file_prefix with '_even' and '_odd' suffixes, respectively." ) parser.add_option( "--filament_attr", type="string", default="filament", help="attribute under which filament identification is stored") parser.add_option( "--predict_helical", type="string", default="", help="Generate projection parameters consistent with helical symmetry") # helicise pdb parser.add_option( "--helicisepdb", action="store_true", default=False, help="Helicise pdb file and save the result to a new pdb file") parser.add_option( "--nrepeats", type="int", default=50, help= "Number of time the helical symmetry will be applied to the input file" ) # input options for generating disks parser.add_option( "--gendisk", type="string", default="", help="Name of file under which generated disks will be saved to") parser.add_option("--ref_nx", type="int", default=-1, help="nx=ny volume size") parser.add_option( "--ref_nz", type="int", default=-1, help="nz volume size - computed disks will be nx x ny x rise/apix") parser.add_option( "--new_pixel_size", type="float", default=-1, help= "desired pixel size of the output disks. The default is -1, in which case there is no resampling (unless --match_pixel_rise flag is True)." ) parser.add_option( "--maxerror", type="float", default=0.1, help= "proportional to the maximum amount of error to tolerate between (dp/new_pixel_size) and int(dp/new_pixel_size ), where new_pixel_size is the pixel size calculated when the option --match_pixel_rise flag is True." ) parser.add_option( "--match_pixel_rise", action="store_true", default=False, help= "calculate new pixel size such that the rise is approximately integer number of pixels given the new pixel size. This will be the pixel size of the output disks." ) # get consistency parser.add_option( "--consistency", type="string", default="", help="Name of parameters to get consistency statistics for") parser.add_option("--phithr", type="float", default=2.0, help="phi threshold for consistency check") parser.add_option("--ythr", type="float", default=2.0, help="y threshold (in Angstroms) for consistency check") parser.add_option( "--segthr", type="int", default=3, help="minimum number of segments/filament for consistency check") # stack disks parser.add_option( "--stackdisk", type="string", default="", help="Name of file under which output volume will be saved to.") parser.add_option("--ref_ny", type="int", default=-1, help="ny of output volume size. Default is ref_nx") # symmetry search parser.add_option("--symsearch", action="store_true", default=False, help="Do helical symmetry search.") parser.add_option( "--ndp", type="int", default=12, help= "In symmetrization search, number of delta z steps equals to 2*ndp+1") parser.add_option( "--ndphi", type="int", default=12, help= "In symmetrization search, number of dphi steps equals to 2*ndphi+1") parser.add_option( "--dp_step", type="float", default=0.1, help="delta z step for symmetrization [Angstroms] (default 0.1)") parser.add_option( "--dphi_step", type="float", default=0.1, help="dphi step for symmetrization [degrees] (default 0.1)") parser.add_option("--datasym", type="string", default="datasym.txt", help="symdoc") parser.add_option( "--symdoc", type="string", default="", help="text file containing helical symmetry parameters dp and dphi") # filament statistics in the stack (options, args) = parser.parse_args(arglist[1:]) if len(args) < 1 or len(args) > 5: print("Various helical reconstruction related functionalities: " + usage2) print("Please run '" + progname + " -h' for detailed options") else: if len(options.hfsc) > 0: if len(args) != 1: print("Incorrect number of parameters") sys.exit() from applications import imgstat_hfsc imgstat_hfsc(args[0], options.hfsc, options.filament_attr) sys.exit() elif len(options.filinfo) > 0: if len(args) != 1: print("Incorrect number of parameters") sys.exit() from EMAN2 import EMUtil filams = EMUtil.get_all_attributes(args[0], "filament") ibeg = 0 filcur = filams[0] n = len(filams) inf = [] i = 1 while (i <= n): if (i < n): fis = filams[i] else: fis = "" if (fis != filcur): iend = i - 1 inf.append([ibeg, iend, iend - ibeg + 1, filcur]) ibeg = i filcur = fis i += 1 from utilities import write_text_row write_text_row(inf, options.filinfo) sys.exit() if len(options.stackdisk) > 0: if len(args) != 1: print("Incorrect number of parameters") sys.exit() dpp = (float(options.dp) / options.apix) rise = int(dpp) if (abs(float(rise) - dpp) > 1.0e-3): print(" dpp has to be integer multiplicity of the pixel size") sys.exit() from utilities import get_im v = get_im(args[0]) from applications import stack_disks ref_ny = options.ref_ny if ref_ny < 0: ref_ny = options.ref_nx sv = stack_disks(v, options.ref_nx, ref_ny, options.ref_nz, options.dphi, rise) sv.write_image(options.stackdisk) sys.exit() if len(options.consistency) > 0: if len(args) != 1: print("Incorrect number of parameters") sys.exit() from development import consistency_params consistency_params(args[0], options.consistency, options.dphi, options.dp, options.apix, phithr=options.phithr, ythr=options.ythr, THR=options.segthr) sys.exit() rminp = int((float(options.rmin) / options.apix) + 0.5) rmaxp = int((float(options.rmax) / options.apix) + 0.5) from utilities import get_input_from_string, get_im xr = get_input_from_string(options.xr) txs = get_input_from_string(options.txs) irp = 1 if options.ou < 0: oup = -1 else: oup = int((options.ou / options.apix) + 0.5) xrp = '' txsp = '' for i in xrange(len(xr)): xrp += " " + str(float(xr[i]) / options.apix) for i in xrange(len(txs)): txsp += " " + str(float(txs[i]) / options.apix) searchxshiftp = int((options.searchxshift / options.apix) + 0.5) nearbyp = int((options.nearby / options.apix) + 0.5) zstepp = int((options.zstep / options.apix) + 0.5) if options.MPI: from mpi import mpi_init, mpi_finalize sys.argv = mpi_init(len(sys.argv), sys.argv) if len(options.predict_helical) > 0: if len(args) != 1: print("Incorrect number of parameters") sys.exit() if options.dp < 0: print( "Helical symmetry paramter rise --dp should not be negative" ) sys.exit() from applications import predict_helical_params predict_helical_params(args[0], options.dp, options.dphi, options.apix, options.predict_helical) sys.exit() if options.helicise: if len(args) != 2: print("Incorrect number of parameters") sys.exit() if options.dp < 0: print( "Helical symmetry paramter rise --dp should not be negative" ) sys.exit() from utilities import get_im, sym_vol vol = get_im(args[0]) vol = sym_vol(vol, options.sym) hvol = vol.helicise(options.apix, options.dp, options.dphi, options.fract, rmaxp, rminp) hvol = sym_vol(hvol, options.sym) hvol.write_image(args[1]) sys.exit() if options.helicisepdb: if len(args) != 2: print("Incorrect number of parameters") sys.exit() if options.dp < 0: print( "Helical symmetry paramter rise --dp should not be negative" ) sys.exit() from math import cos, sin, radians from copy import deepcopy import numpy from numpy import zeros, dot, float32 dp = options.dp dphi = options.dphi nperiod = options.nrepeats infile = open(args[0], "r") pall = infile.readlines() infile.close() p = [] pos = [] lkl = -1 for i in xrange(len(pall)): if ((pall[i])[:4] == 'ATOM'): if (lkl == -1): lkl = i p.append(pall[i]) pos.append(i) n = len(p) X = zeros((3, len(p)), dtype=float32) X_new = zeros((3, len(p)), dtype=float32) for i in xrange(len(p)): element = deepcopy(p[i]) X[0, i] = float(element[30:38]) X[1, i] = float(element[38:46]) X[2, i] = float(element[46:54]) pnew = [] for j in xrange(-nperiod, nperiod + 1): for i in xrange(n): pnew.append(deepcopy(p[i])) dphi = radians(dphi) m = zeros((3, 3), dtype=float32) t = zeros((3, 1), dtype=float32) m[2][2] = 1.0 t[0, 0] = 0.0 t[1, 0] = 0.0 for j in xrange(-nperiod, nperiod + 1): if j != 0: rd = j * dphi m[0][0] = cos(rd) m[0][1] = sin(rd) m[1][0] = -m[0][1] m[1][1] = m[0][0] t[2, 0] = j * dp X_new = dot(m, X) + t for i in xrange(n): pnew[j * n + i] = pnew[j * n + i][:30] + "%8.3f" % (float( X_new[0, i])) + "%8.3f" % (float( X_new[1, i])) + "%8.3f" % (float( X_new[2, i])) + pnew[j * n + i][54:] outfile = open(args[1], "w") outfile.writelines(pall[0:lkl]) outfile.writelines(pnew) outfile.writelines("END\n") outfile.close() sys.exit() if options.volalixshift: if options.maxit > 1: print( "Inner iteration for x-shift determinatin is restricted to 1" ) sys.exit() if len(args) < 4: mask = None else: mask = args[3] from applications import volalixshift_MPI global_def.BATCH = True volalixshift_MPI(args[0], args[1], args[2], searchxshiftp, options.apix, options.dp, options.dphi, options.fract, rmaxp, rminp, mask, options.maxit, options.CTF, options.snr, options.sym, options.function, options.npad, options.debug, nearbyp) global_def.BATCH = False if options.diskali: #if options.maxit > 1: # print "Inner iteration for disk alignment is restricted to 1" # sys.exit() if len(args) < 4: mask = None else: mask = args[3] global_def.BATCH = True if (options.sym[:1] == "d" or options.sym[:1] == "D"): from development import diskaliD_MPI diskaliD_MPI(args[0], args[1], args[2], mask, options.dp, options.dphi, options.apix, options.function, zstepp, options.fract, rmaxp, rminp, options.CTF, options.maxit, options.sym) else: from applications import diskali_MPI diskali_MPI(args[0], args[1], args[2], mask, options.dp, options.dphi, options.apix, options.function, zstepp, options.fract, rmaxp, rminp, options.CTF, options.maxit, options.sym) global_def.BATCH = False if options.symsearch: if len(options.symdoc) < 1: if options.dp < 0 or options.dphi < 0: print( "Enter helical symmetry parameters either using --symdoc or --dp and --dphi" ) sys.exit() if options.dp < 0 or options.dphi < 0: # read helical symmetry parameters from symdoc from utilities import read_text_row hparams = read_text_row(options.symdoc) dp = hparams[0][0] dphi = hparams[0][1] else: dp = options.dp dphi = options.dphi from applications import symsearch_MPI if len(args) < 3: mask = None else: mask = args[2] global_def.BATCH = True symsearch_MPI(args[0], args[1], mask, dp, options.ndp, options.dp_step, dphi, options.ndphi, options.dphi_step, rminp, rmaxp, options.fract, options.sym, options.function, options.datasym, options.apix, options.debug) global_def.BATCH = False elif len(options.gendisk) > 0: from applications import gendisks_MPI global_def.BATCH = True if len(args) == 1: mask3d = None else: mask3d = args[1] if options.dp < 0: print( "Helical symmetry paramter rise --dp must be explictly set!" ) sys.exit() gendisks_MPI(args[0], mask3d, options.ref_nx, options.apix, options.dp, options.dphi, options.fract, rmaxp, rminp, options.CTF, options.function, options.sym, options.gendisk, options.maxerror, options.new_pixel_size, options.match_pixel_rise) global_def.BATCH = False if options.MPI: from mpi import mpi_finalize mpi_finalize()
def main(): import os import sys from optparse import OptionParser from global_def import SPARXVERSION import global_def arglist = [] for arg in sys.argv: arglist.append( arg ) progname = os.path.basename(arglist[0]) usage = progname + " stack ref_vol outdir <maskfile> --ir=inner_radius --ou=outer_radius --rs=ring_step --xr=x_range --ynumber=y_numbers --txs=translational_search_stepx --delta=angular_step --an=angular_neighborhood --center=1 --maxit=max_iter --CTF --snr=1.0 --ref_a=S --sym=c1 --datasym=symdoc --new" parser = OptionParser(usage,version=SPARXVERSION) #parser.add_option("--ir", type="float", default= -1, help="inner radius for rotational correlation > 0 (set to 1) (Angstroms)") parser.add_option("--ou", type="float", default= -1, help="outer radius for rotational 2D correlation < int(nx/2)-1 (set to the radius of the particle) (Angstroms)") parser.add_option("--rs", type="int", default= 1, help="step between rings in rotational correlation >0 (set to 1)" ) parser.add_option("--xr", type="string", default= " 4 2 1 1 1", help="range for translation search in x direction, search is +/-xr (Angstroms) ") parser.add_option("--txs", type="string", default= "1 1 1 0.5 0.25", help="step size of the translation search in x directions, search is -xr, -xr+ts, 0, xr-ts, xr (Angstroms)") parser.add_option("--y_restrict", type="string", default= "-1 -1 -1 -1 -1", help="range for translational search in y-direction, search is +/-y_restrict in Angstroms. This only applies to local search, i.e., when an is not -1. If y_restrict < 0, then for ihrsrlocalcons (option --localcons local search with consistency), the y search range is set such that it is the same ratio to dp as angular search range is to dphi. For regular ihrsr, y search range is the full range when y_restrict< 0. Default is -1.") parser.add_option("--ynumber", type="string", default= "4 8 16 32 32", help="even number of the translation search in y direction, search is (-dpp/2,-dpp/2+dpp/ny,,..,0,..,dpp/2-dpp/ny dpp/2]") parser.add_option("--delta", type="string", default= " 10 6 4 3 2", help="angular step of reference projections") parser.add_option("--an", type="string", default= "-1", help="angular neighborhood for local searches (default -1, meaning do exhaustive search)") parser.add_option("--maxit", type="int", default= 30, help="maximum number of iterations performed for each angular step (default 30) ") parser.add_option("--CTF", action="store_true", default=False, help="CTF correction") parser.add_option("--snr", type="float", default= 1.0, help="Signal-to-Noise Ratio of the data (default 1)") parser.add_option("--MPI", action="store_true", default=True, help="use MPI version") #parser.add_option("--fourvar", action="store_true", default=False, help="compute Fourier variance") parser.add_option("--apix", type="float", default= -1.0, help="pixel size in Angstroms") parser.add_option("--dp", type="float", default= -1.0, help="delta z - translation in Angstroms") parser.add_option("--dphi", type="float", default= -1.0, help="delta phi - rotation in degrees") parser.add_option("--ndp", type="int", default= 12, help="In symmetrization search, number of delta z steps equals to 2*ndp+1") parser.add_option("--ndphi", type="int", default= 12, help="In symmetrization search,number of dphi steps equas to 2*ndphi+1") parser.add_option("--dp_step", type="float", default= 0.1, help="delta z (Angstroms) step for symmetrization") parser.add_option("--dphi_step", type="float", default= 0.1, help="dphi step for symmetrization") parser.add_option("--psi_max", type="float", default= 10.0, help="maximum psi - how far rotation in plane can can deviate from 90 or 270 degrees (default 10)") parser.add_option("--rmin", type="float", default= 0.0, help="minimal radius for hsearch (Angstroms)") parser.add_option("--rmax", type="float", default= 80.0, help="maximal radius for hsearch (Angstroms)") parser.add_option("--fract", type="float", default= 0.7, help="fraction of the volume used for helical search") parser.add_option("--sym", type="string", default= "c1", help="symmetry of the structure") parser.add_option("--function", type="string", default="helical", help="name of the reference preparation function") parser.add_option("--datasym", type="string", default="datasym.txt", help="symdoc") parser.add_option("--nise", type="int", default= 200, help="start symmetrization after nise steps (default 200)") parser.add_option("--npad", type="int", default= 2, help="padding size for 3D reconstruction, (default 2)") parser.add_option("--debug", action="store_true", default=False, help="debug") parser.add_option("--new", action="store_true", default=False, help="use rectangular recon and projection version") parser.add_option("--initial_theta", type="float", default=90.0, help="intial theta for reference projection (default 90)") parser.add_option("--delta_theta", type="float", default=1.0, help="delta theta for reference projection (default 1.0)") parser.add_option("--WRAP", type="int", default= 1, help="do helical wrapping (default 1, meaning yes)") (options, args) = parser.parse_args(arglist[1:]) if len(args) < 1 or len(args) > 5: print("usage: " + usage + "\n") print("Please run '" + progname + " -h' for detailed options") else: # Convert input arguments in the units/format as expected by ihrsr_MPI in applications. if options.apix < 0: print("Please enter pixel size") sys.exit() rminp = int((float(options.rmin)/options.apix) + 0.5) rmaxp = int((float(options.rmax)/options.apix) + 0.5) from utilities import get_input_from_string, get_im xr = get_input_from_string(options.xr) txs = get_input_from_string(options.txs) y_restrict = get_input_from_string(options.y_restrict) irp = 1 if options.ou < 0: oup = -1 else: oup = int( (old_div(options.ou,options.apix)) + 0.5) xrp = '' txsp = '' y_restrict2 = '' for i in range(len(xr)): xrp += " "+str(float(xr[i])/options.apix) for i in range(len(txs)): txsp += " "+str(float(txs[i])/options.apix) # now y_restrict has the same format as x search range .... has to change ihrsr accordingly for i in range(len(y_restrict)): y_restrict2 += " "+str(float(y_restrict[i])/options.apix) if options.MPI: from mpi import mpi_init, mpi_finalize sys.argv = mpi_init(len(sys.argv), sys.argv) if global_def.CACHE_DISABLE: from utilities import disable_bdb_cache disable_bdb_cache() from applications import ihrsr global_def.BATCH = True if len(args) < 4: mask = None else: mask = args[3] ihrsr(args[0], args[1], args[2], mask, irp, oup, options.rs, xrp, options.ynumber, txsp, options.delta, options.initial_theta, options.delta_theta, options.an, options.maxit, options.CTF, options.snr, options.dp, options.ndp, options.dp_step, options.dphi, options.ndphi, options.dphi_step, options.psi_max, rminp, rmaxp, options.fract, options.nise, options.npad,options.sym, options.function, options.datasym, options.apix, options.debug, options.MPI, options.WRAP, y_restrict2) global_def.BATCH = False if options.MPI: from mpi import mpi_finalize mpi_finalize()
def main(): import os import sys from optparse import OptionParser from global_def import SPARXVERSION, ERROR import global_def arglist = [] for arg in sys.argv: arglist.append( arg ) progname = os.path.basename(arglist[0]) usage = progname + " stack ref_vol outdir <maskfile> --ir=inner_radius --ou=outer_radius --rs=ring_step --xr=x_range --ynumber=y_numbers --txs=translational_search_stepx --delta=angular_step --an=angular_neighborhood --maxit=max_iter --CTF --snr=1.0 --sym=c1 --datasym=symdoc" parser = OptionParser(usage,version=SPARXVERSION) #parser.add_option("--ir", type="float", default= -1, help="Inner radius for psi angle search > 0 (set to 1) (Angstroms)") parser.add_option("--ou", type="float", default= -1, help="Outer radius for psi angle search < int(nx*pixel_size/2)-1 (Angstroms)") parser.add_option("--rs", type="int", default= 1, help="Step between rings in rotational correlation >0 (set to 1)" ) parser.add_option("--xr", type="string", default= " 4 2 1 1 1", help="Range for translation search in x direction, search within +/-xr (Angstroms) ") parser.add_option("--txs", type="string", default= "1 1 1 0.5 0.25", help="Step size of the translation search in x directions, search is -xr, -xr+ts, 0, xr-ts, xr (Angstroms)") parser.add_option("--y_restrict", type="string", default= "-1 -1 -1 -1 -1", help="Range for translational search in y-direction, search is +/-y_restrict in Angstroms. This only applies to local search, i.e., when an is not -1. If y_restrict < 0, then the y search range is set such that it is the same ratio to dp as angular search range is to dphi. For regular ihrsr, y search range is the full range when y_restrict< 0. Default is -1.") parser.add_option("--ynumber", type="string", default= "4 8 16 32 32", help="Even number of the steps for the search in y direction, search is (-dpp/2,-dpp/2+dpp/ny,,..,0,..,dpp/2-dpp/ny dpp/2]") parser.add_option("--delta", type="string", default= "10 6 4 3 2", help="Angular step of reference projections") parser.add_option("--an", type="string", default= "-1", help="Angular neighborhood for local searches") parser.add_option("--maxit", type="int", default= 30, help="Maximum number of iterations performed for each angular step (set to 30) ") parser.add_option("--searchit", type="int", default= 1, help="Number of iterations to predict/search before doing reconstruction and updating of reference volume. Default is 1. If maxit=3 and searchit=2, then for each of the 3 inner iterations, 2 iterations of prediction/search will be performed before generating reconstruction.") parser.add_option("--CTF", action="store_true", default=False, help="CTF correction") parser.add_option("--snr", type="float", default= 1.0, help="Signal-to-Noise Ratio of the data") parser.add_option("--slowIO", action="store_true", default=False, help="sequential reading data for each processor in MPI mode") #parser.add_option("--fourvar", action="store_true", default=False, help="compute Fourier variance") parser.add_option("--apix", type="float", default= -1.0, help="Pixel size in Angstroms") parser.add_option("--dp", type="float", default= -1.0, help="Helical symmetry axial rise (Angstroms)") parser.add_option("--dphi", type="float", default= -1.0, help="Helical symmetry azimuthal angle") #parser.add_option("--MA", action="store_true", default=False, help="predict consistent parameters based on moving average") parser.add_option("--psi_max", type="float", default= 10.0, help="Maximum psi - how far rotation in plane can can deviate from 90 or 270 degrees") parser.add_option("--rmin", type="float", default= 0.0, help="Min radius for application of helical symmetry (Angstroms)") parser.add_option("--rmax", type="float", default= 80.0, help="Max radius for application of helical symmetry (Angstroms)") parser.add_option("--fract", type="float", default= 0.7, help="Fraction of volume used for application of helical symmetry") parser.add_option("--sym", type="string", default= "c1", help="Point-group symmetry of the filament") parser.add_option("--function", type="string", default="helical", help="Name of the reference preparation function (Default: helical)") parser.add_option("--npad", type="int", default= 2, help="Padding size for 3D reconstruction (default=2)") parser.add_option("--debug", action="store_true", default=False, help="debug") parser.add_option("--initial_theta", type="float", default=90.0, help="Intial theta for out-of-plane tilt search, the range will be (initial theta to 90.0 in steps of delta) (default = 90, no out-of-plane tilt)") parser.add_option("--delta_theta", type="float", default=1.0, help="Delta theta for out-of-plane tilt search (default = 1)") #parser.add_option("--boundaryavg", action="store_true", default=False, help="boundaryavg") #parser.add_option("--MA_WRAP", type="int", default= 0, help="do wrapping in MA if MA_WRAP=1, else no wrapping in MA. Default is 0.") parser.add_option("--seg_ny", type="int", default= 256, help="y dimension of desired segment size, should be related to fract in that fract ~ seg_ny/ny, where ny is dimension of input projections. (pixels)") parser.add_option("--new", action="store_true", default=False, help="use new version") parser.add_option("--snake", action="store_true", default=False, help="use snake method") parser.add_option("--snakeknots", type="int", default= -1, help="maximal number of knots for each filament snake. If take default value -1, it will take nseg//2+1, where nseg is the number of segments in the filament") (options, args) = parser.parse_args(arglist[1:]) if len(args) < 3 or len(args) > 4: print("usage: " + usage + "\n") print("Please run '" + progname + " -h' for detailed options") else: global_def.BATCH = True # Convert input arguments in the units/format as expected by ihrsr_MPI in applications. if options.apix < 0: ERROR("Please specify pixel size apix","sxheliconlocal",1) if options.dp < 0 or options.dphi < 0: ERROR("Please specify helical symmetry parameters dp and dphi","sxheliconlocal",1) if options.an <= 0 : ERROR("Angular search range (an) has to be given. Only local searches are permitted.","sxheliconlocal",1) print(" This code is under development, some instabilities are possible 12/28/2014") rminp = int((float(options.rmin)/options.apix) + 0.5) rmaxp = int((float(options.rmax)/options.apix) + 0.5) from utilities import get_input_from_string, get_im xr = get_input_from_string(options.xr) txs = get_input_from_string(options.txs) y_restrict = get_input_from_string(options.y_restrict) irp = 1 if options.ou < 0: oup = -1 else: oup = int( (options.ou/options.apix) + 0.5) xrp = "" txsp = "" y_restrict2 = "" for i in xrange(len(xr)): xrp += str(float(xr[i])/options.apix)+" " xrp = xrp[:-1] for i in xrange(len(txs)): txsp += str(float(txs[i])/options.apix)+" " txsp = txsp[:-1] # now y_restrict has the same format as x search range .... has to change ihrsr accordingly for i in xrange(len(y_restrict)): y_restrict2 += str(float(y_restrict[i])/options.apix)+" " y_restrict2 = y_restrict2[:-1] from mpi import mpi_init, mpi_finalize sys.argv = mpi_init(len(sys.argv), sys.argv) if global_def.CACHE_DISABLE: from utilities import disable_bdb_cache disable_bdb_cache() from applications import localhelicon_MPI, localhelicon_MPInew, localhelicon_MPIming if len(args) < 4: mask = None else: mask = args[3] if options.new: localhelicon_MPInew(args[0], args[1], args[2], options.seg_ny, mask, irp, oup, options.rs, xrp, options.ynumber, \ txsp, options.delta, options.initial_theta, options.delta_theta, options.an, options.maxit, options.CTF, options.snr, \ options.dp, options.dphi, options.psi_max, \ rminp, rmaxp, options.fract, options.npad,options.sym, options.function,\ options.apix, options.debug, y_restrict2, options.searchit, options.slowIO) elif options.snake: localhelicon_MPIming(args[0], args[1], args[2], options.seg_ny, mask, irp, oup, options.rs, xrp, options.ynumber, \ txsp, options.delta, options.initial_theta, options.delta_theta, options.an, options.maxit, options.CTF, options.snr, \ options.dp, options.dphi, options.psi_max, \ rminp, rmaxp, options.fract, options.npad,options.sym, options.function,\ options.apix, options.debug, y_restrict2, options.searchit, options.snakeknots, options.slowIO) else: localhelicon_MPI(args[0], args[1], args[2], options.seg_ny, mask, irp, oup, options.rs, xrp, options.ynumber, \ txsp, options.delta, options.initial_theta, options.delta_theta, options.an, options.maxit, options.CTF, options.snr, \ options.dp, options.dphi, options.psi_max, \ rminp, rmaxp, options.fract, options.npad,options.sym, options.function,\ options.apix, options.debug, y_restrict2, options.searchit, options.slowIO) global_def.BATCH = False from mpi import mpi_finalize mpi_finalize()
def main(): from utilities import get_input_from_string progname = os.path.basename(sys.argv[0]) usage = progname + " stack output_average --radius=particle_radius --xr=xr --yr=yr --ts=ts --thld_err=thld_err --num_ali=num_ali --fl=fl --aa=aa --CTF --verbose --stables" parser = OptionParser(usage,version=SPARXVERSION) parser.add_option("--radius", type="int", default=-1, help=" particle radius for alignment") parser.add_option("--xr", type="string" , default="2 1", help="range for translation search in x direction, search is +/xr (default 2,1)") parser.add_option("--yr", type="string" , default="-1", help="range for translation search in y direction, search is +/yr (default = same as xr)") parser.add_option("--ts", type="string" , default="1 0.5", help="step size of the translation search in both directions, search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional (default: 1,0.5)") parser.add_option("--thld_err", type="float", default=0.75, help="threshld of pixel error (default = 0.75)") parser.add_option("--num_ali", type="int", default=5, help="number of alignments performed for stability (default = 5)") parser.add_option("--maxit", type="int", default=30, help="number of iterations for each xr (default = 30)") parser.add_option("--fl", type="float" , default=0.3, help="cut-off frequency of hyperbolic tangent low-pass Fourier filter (default = 0.3)") parser.add_option("--aa", type="float" , default=0.2, help="fall-off of hyperbolic tangent low-pass Fourier filter (default = 0.2)") parser.add_option("--CTF", action="store_true", default=False, help="Use CTF correction during the alignment ") parser.add_option("--verbose", action="store_true", default=False, help="print individual pixel error (default = False)") parser.add_option("--stables", action="store_true", default=False, help="output the stable particles number in file (default = False)") parser.add_option("--method", type="string" , default=" ", help="SHC (standard method is default when flag is ommitted)") (options, args) = parser.parse_args() if len(args) != 1 and len(args) != 2: print "usage: " + usage print "Please run '" + progname + " -h' for detailed options" else: if global_def.CACHE_DISABLE: from utilities import disable_bdb_cache disable_bdb_cache() from applications import within_group_refinement, ali2d_ras from pixel_error import multi_align_stability from utilities import write_text_file, write_text_row global_def.BATCH = True xrng = get_input_from_string(options.xr) if options.yr == "-1": yrng = xrng else : yrng = get_input_from_string(options.yr) step = get_input_from_string(options.ts) class_data = EMData.read_images(args[0]) nx = class_data[0].get_xsize() ou = options.radius num_ali = options.num_ali if ou == -1: ou = nx/2-2 from utilities import model_circle, get_params2D, set_params2D mask = model_circle(ou, nx, nx) if options.CTF : from filter import filt_ctf for im in xrange(len(class_data)): # Flip phases class_data[im] = filt_ctf(class_data[im], class_data[im].get_attr("ctf"), binary=1) for im in class_data: im.set_attr("previousmax", -1.0e10) try: t = im.get_attr("xform.align2d") # if they are there, no need to set them! except: try: t = im.get_attr("xform.projection") d = t.get_params("spider") set_params2D(im, [0.0, -d["tx"], -d["ty"], 0, 1.0]) except: set_params2D(im, [0.0, 0.0, 0.0, 0, 1.0]) all_ali_params = [] for ii in xrange(num_ali): ali_params = [] if options.verbose: ALPHA = [] SX = [] SY = [] MIRROR = [] if( xrng[0] == 0.0 and yrng[0] == 0.0 ): avet = ali2d_ras(class_data, randomize = True, ir = 1, ou = ou, rs = 1, step = 1.0, dst = 90.0, \ maxit = options.maxit, check_mirror = True, FH=options.fl, FF=options.aa) else: avet = within_group_refinement(class_data, mask, True, 1, ou, 1, xrng, yrng, step, 90.0, \ maxit = options.maxit, FH=options.fl, FF=options.aa, method = options.method) from utilities import info #print " avet ",info(avet) for im in class_data: alpha, sx, sy, mirror, scale = get_params2D(im) ali_params.extend([alpha, sx, sy, mirror]) if options.verbose: ALPHA.append(alpha) SX.append(sx) SY.append(sy) MIRROR.append(mirror) all_ali_params.append(ali_params) if options.verbose: write_text_file([ALPHA, SX, SY, MIRROR], "ali_params_run_%d"%ii) """ avet = class_data[0] from utilities import read_text_file all_ali_params = [] for ii in xrange(5): temp = read_text_file( "ali_params_run_%d"%ii,-1) uuu = [] for k in xrange(len(temp[0])): uuu.extend([temp[0][k],temp[1][k],temp[2][k],temp[3][k]]) all_ali_params.append(uuu) """ stable_set, mir_stab_rate, pix_err = multi_align_stability(all_ali_params, 0.0, 10000.0, options.thld_err, options.verbose, 2*ou+1) print "%4s %20s %20s %20s %30s %6.2f"%("", "Size of set", "Size of stable set", "Mirror stab rate", "Pixel error prior to pruning the set above threshold of",options.thld_err) print "Average stat: %10d %20d %20.2f %15.2f"%( len(class_data), len(stable_set), mir_stab_rate, pix_err) if( len(stable_set) > 0): if options.stables: stab_mem = [[0,0.0,0] for j in xrange(len(stable_set))] for j in xrange(len(stable_set)): stab_mem[j] = [int(stable_set[j][1]), stable_set[j][0], j] write_text_row(stab_mem, "stable_particles.txt") stable_set_id = [] particle_pixerr = [] for s in stable_set: stable_set_id.append(s[1]) particle_pixerr.append(s[0]) from fundamentals import rot_shift2D avet.to_zero() l = -1 print "average parameters: angle, x-shift, y-shift, mirror" for j in stable_set_id: l += 1 print " %4d %4d %12.2f %12.2f %12.2f %1d"%(l,j, stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], int(stable_set[l][2][3])) avet += rot_shift2D(class_data[j], stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], stable_set[l][2][3] ) avet /= (l+1) avet.set_attr('members', stable_set_id) avet.set_attr('pix_err', pix_err) avet.set_attr('pixerr', particle_pixerr) avet.write_image(args[1]) global_def.BATCH = False
def main(): import os import sys from optparse import OptionParser from global_def import SPARXVERSION import global_def arglist = [] for arg in sys.argv: arglist.append( arg ) progname = os.path.basename(arglist[0]) usage = progname + " stack ref_vol outdir <maskfile> --ir=inner_radius --ou=outer_radius --rs=ring_step --xr=x_range --ynumber=y_numbers --txs=translational_search_stepx --delta=angular_step --an=angular_neighborhood --center=1 --maxit=max_iter --CTF --snr=1.0 --ref_a=S --sym=c1 --datasym=symdoc --new" parser = OptionParser(usage,version=SPARXVERSION) #parser.add_option("--ir", type="float", default= -1, help="inner radius for rotational correlation > 0 (set to 1) (Angstroms)") parser.add_option("--ou", type="float", default= -1, help="outer radius for rotational 2D correlation < int(nx/2)-1 (set to the radius of the particle) (Angstroms)") parser.add_option("--rs", type="int", default= 1, help="step between rings in rotational correlation >0 (set to 1)" ) parser.add_option("--xr", type="string", default= " 4 2 1 1 1", help="range for translation search in x direction, search is +/-xr (Angstroms) ") parser.add_option("--txs", type="string", default= "1 1 1 0.5 0.25", help="step size of the translation search in x directions, search is -xr, -xr+ts, 0, xr-ts, xr (Angstroms)") parser.add_option("--y_restrict", type="string", default= "-1 -1 -1 -1 -1", help="range for translational search in y-direction, search is +/-y_restrict in Angstroms. This only applies to local search, i.e., when an is not -1. If y_restrict < 0, then for ihrsrlocalcons (option --localcons local search with consistency), the y search range is set such that it is the same ratio to dp as angular search range is to dphi. For regular ihrsr, y search range is the full range when y_restrict< 0. Default is -1.") parser.add_option("--ynumber", type="string", default= "4 8 16 32 32", help="even number of the translation search in y direction, search is (-dpp/2,-dpp/2+dpp/ny,,..,0,..,dpp/2-dpp/ny dpp/2]") parser.add_option("--delta", type="string", default= " 10 6 4 3 2", help="angular step of reference projections") parser.add_option("--an", type="string", default= "-1", help="angular neighborhood for local searches (default -1, meaning do exhaustive search)") parser.add_option("--maxit", type="int", default= 30, help="maximum number of iterations performed for each angular step (default 30) ") parser.add_option("--CTF", action="store_true", default=False, help="CTF correction") parser.add_option("--snr", type="float", default= 1.0, help="Signal-to-Noise Ratio of the data (default 1)") parser.add_option("--MPI", action="store_true", default=True, help="use MPI version") #parser.add_option("--fourvar", action="store_true", default=False, help="compute Fourier variance") parser.add_option("--apix", type="float", default= -1.0, help="pixel size in Angstroms") parser.add_option("--dp", type="float", default= -1.0, help="delta z - translation in Angstroms") parser.add_option("--dphi", type="float", default= -1.0, help="delta phi - rotation in degrees") parser.add_option("--ndp", type="int", default= 12, help="In symmetrization search, number of delta z steps equals to 2*ndp+1") parser.add_option("--ndphi", type="int", default= 12, help="In symmetrization search,number of dphi steps equas to 2*ndphi+1") parser.add_option("--dp_step", type="float", default= 0.1, help="delta z (Angstroms) step for symmetrization") parser.add_option("--dphi_step", type="float", default= 0.1, help="dphi step for symmetrization") parser.add_option("--psi_max", type="float", default= 10.0, help="maximum psi - how far rotation in plane can can deviate from 90 or 270 degrees (default 10)") parser.add_option("--rmin", type="float", default= 0.0, help="minimal radius for hsearch (Angstroms)") parser.add_option("--rmax", type="float", default= 80.0, help="maximal radius for hsearch (Angstroms)") parser.add_option("--fract", type="float", default= 0.7, help="fraction of the volume used for helical search") parser.add_option("--sym", type="string", default= "c1", help="symmetry of the structure") parser.add_option("--function", type="string", default="helical", help="name of the reference preparation function") parser.add_option("--datasym", type="string", default="datasym.txt", help="symdoc") parser.add_option("--nise", type="int", default= 200, help="start symmetrization after nise steps (default 200)") parser.add_option("--npad", type="int", default= 2, help="padding size for 3D reconstruction, (default 2)") parser.add_option("--debug", action="store_true", default=False, help="debug") parser.add_option("--new", action="store_true", default=False, help="use rectangular recon and projection version") parser.add_option("--initial_theta", type="float", default=90.0, help="intial theta for reference projection (default 90)") parser.add_option("--delta_theta", type="float", default=1.0, help="delta theta for reference projection (default 1.0)") parser.add_option("--WRAP", type="int", default= 1, help="do helical wrapping (default 1, meaning yes)") (options, args) = parser.parse_args(arglist[1:]) if len(args) < 1 or len(args) > 5: print "usage: " + usage + "\n" print "Please run '" + progname + " -h' for detailed options" else: # Convert input arguments in the units/format as expected by ihrsr_MPI in applications. if options.apix < 0: print "Please enter pixel size" sys.exit() rminp = int((float(options.rmin)/options.apix) + 0.5) rmaxp = int((float(options.rmax)/options.apix) + 0.5) from utilities import get_input_from_string, get_im xr = get_input_from_string(options.xr) txs = get_input_from_string(options.txs) y_restrict = get_input_from_string(options.y_restrict) irp = 1 if options.ou < 0: oup = -1 else: oup = int( (options.ou/options.apix) + 0.5) xrp = '' txsp = '' y_restrict2 = '' for i in xrange(len(xr)): xrp += " "+str(float(xr[i])/options.apix) for i in xrange(len(txs)): txsp += " "+str(float(txs[i])/options.apix) # now y_restrict has the same format as x search range .... has to change ihrsr accordingly for i in xrange(len(y_restrict)): y_restrict2 += " "+str(float(y_restrict[i])/options.apix) if options.MPI: from mpi import mpi_init, mpi_finalize sys.argv = mpi_init(len(sys.argv), sys.argv) if global_def.CACHE_DISABLE: from utilities import disable_bdb_cache disable_bdb_cache() from applications import ihrsr global_def.BATCH = True if len(args) < 4: mask = None else: mask = args[3] ihrsr(args[0], args[1], args[2], mask, irp, oup, options.rs, xrp, options.ynumber, txsp, options.delta, options.initial_theta, options.delta_theta, options.an, options.maxit, options.CTF, options.snr, options.dp, options.ndp, options.dp_step, options.dphi, options.ndphi, options.dphi_step, options.psi_max, rminp, rmaxp, options.fract, options.nise, options.npad,options.sym, options.function, options.datasym, options.apix, options.debug, options.MPI, options.WRAP, y_restrict2) global_def.BATCH = False if options.MPI: from mpi import mpi_finalize mpi_finalize()
def ali3d_MPI(stack, ref_vol, outdir, maskfile = None, ir = 1, ou = -1, rs = 1, xr = "4 2 2 1", yr = "-1", ts = "1 1 0.5 0.25", delta = "10 6 4 4", an = "-1", center = 0, maxit = 5, term = 95, CTF = False, fourvar = False, snr = 1.0, ref_a = "S", sym = "c1", sort=True, cutoff=999.99, pix_cutoff="0", two_tail=False, model_jump="1 1 1 1 1", restart=False, save_half=False, protos=None, oplane=None, lmask=-1, ilmask=-1, findseam=False, vertstep=None, hpars="-1", hsearch="73.0 170.0", full_output = False, compare_repro = False, compare_ref_free = "-1", ref_free_cutoff= "-1 -1 -1 -1", wcmask = None, debug = False, recon_pad = 4): from alignment import Numrinit, prepare_refrings from utilities import model_circle, get_image, drop_image, get_input_from_string from utilities import bcast_list_to_all, bcast_number_to_all, reduce_EMData_to_root, bcast_EMData_to_all from utilities import send_attr_dict from utilities import get_params_proj, file_type from fundamentals import rot_avg_image import os import types from utilities import print_begin_msg, print_end_msg, print_msg from mpi import mpi_bcast, mpi_comm_size, mpi_comm_rank, MPI_FLOAT, MPI_COMM_WORLD, mpi_barrier, mpi_reduce from mpi import mpi_reduce, MPI_INT, MPI_SUM, mpi_finalize from filter import filt_ctf from projection import prep_vol, prgs from statistics import hist_list, varf3d_MPI, fsc_mask from numpy import array, bincount, array2string, ones number_of_proc = mpi_comm_size(MPI_COMM_WORLD) myid = mpi_comm_rank(MPI_COMM_WORLD) main_node = 0 if myid == main_node: if os.path.exists(outdir): ERROR('Output directory exists, please change the name and restart the program', "ali3d_MPI", 1) os.mkdir(outdir) mpi_barrier(MPI_COMM_WORLD) if debug: from time import sleep while not os.path.exists(outdir): print "Node ",myid," waiting..." sleep(5) info_file = os.path.join(outdir, "progress%04d"%myid) finfo = open(info_file, 'w') else: finfo = None mjump = get_input_from_string(model_jump) xrng = get_input_from_string(xr) if yr == "-1": yrng = xrng else : yrng = get_input_from_string(yr) step = get_input_from_string(ts) delta = get_input_from_string(delta) ref_free_cutoff = get_input_from_string(ref_free_cutoff) pix_cutoff = get_input_from_string(pix_cutoff) lstp = min(len(xrng), len(yrng), len(step), len(delta)) if an == "-1": an = [-1] * lstp else: an = get_input_from_string(an) # make sure pix_cutoff is set for all iterations if len(pix_cutoff)<lstp: for i in xrange(len(pix_cutoff),lstp): pix_cutoff.append(pix_cutoff[-1]) # don't waste time on sub-pixel alignment for low-resolution ang incr for i in range(len(step)): if (delta[i] > 4 or delta[i] == -1) and step[i] < 1: step[i] = 1 first_ring = int(ir) rstep = int(rs) last_ring = int(ou) max_iter = int(maxit) center = int(center) nrefs = EMUtil.get_image_count( ref_vol ) nmasks = 0 if maskfile: # read number of masks within each maskfile (mc) nmasks = EMUtil.get_image_count( maskfile ) # open masks within maskfile (mc) maskF = EMData.read_images(maskfile, xrange(nmasks)) vol = EMData.read_images(ref_vol, xrange(nrefs)) nx = vol[0].get_xsize() ## make sure box sizes are the same if myid == main_node: im=EMData.read_images(stack,[0]) bx = im[0].get_xsize() if bx!=nx: print_msg("Error: Stack box size (%i) differs from initial model (%i)\n"%(bx,nx)) sys.exit() del im,bx # for helical processing: helicalrecon = False if protos is not None or hpars != "-1" or findseam is True: helicalrecon = True # if no out-of-plane param set, use 5 degrees if oplane is None: oplane=5.0 if protos is not None: proto = get_input_from_string(protos) if len(proto) != nrefs: print_msg("Error: insufficient protofilament numbers supplied") sys.exit() if hpars != "-1": hpars = get_input_from_string(hpars) if len(hpars) != 2*nrefs: print_msg("Error: insufficient helical parameters supplied") sys.exit() ## create helical parameter file for helical reconstruction if helicalrecon is True and myid == main_node: from hfunctions import createHpar # create initial helical parameter files dp=[0]*nrefs dphi=[0]*nrefs vdp=[0]*nrefs vdphi=[0]*nrefs for iref in xrange(nrefs): hpar = os.path.join(outdir,"hpar%02d.spi"%(iref)) params = False if hpars != "-1": # if helical parameters explicitly given, set twist & rise params = [float(hpars[iref*2]),float(hpars[(iref*2)+1])] dp[iref],dphi[iref],vdp[iref],vdphi[iref] = createHpar(hpar,proto[iref],params,vertstep) # get values for helical search parameters hsearch = get_input_from_string(hsearch) if len(hsearch) != 2: print_msg("Error: specify outer and inner radii for helical search") sys.exit() if last_ring < 0 or last_ring > int(nx/2)-2 : last_ring = int(nx/2) - 2 if myid == main_node: # import user_functions # user_func = user_functions.factory[user_func_name] print_begin_msg("ali3d_MPI") print_msg("Input stack : %s\n"%(stack)) print_msg("Reference volume : %s\n"%(ref_vol)) print_msg("Output directory : %s\n"%(outdir)) if nmasks > 0: print_msg("Maskfile (number of masks) : %s (%i)\n"%(maskfile,nmasks)) print_msg("Inner radius : %i\n"%(first_ring)) print_msg("Outer radius : %i\n"%(last_ring)) print_msg("Ring step : %i\n"%(rstep)) print_msg("X search range : %s\n"%(xrng)) print_msg("Y search range : %s\n"%(yrng)) print_msg("Translational step : %s\n"%(step)) print_msg("Angular step : %s\n"%(delta)) print_msg("Angular search range : %s\n"%(an)) print_msg("Maximum iteration : %i\n"%(max_iter)) print_msg("Center type : %i\n"%(center)) print_msg("CTF correction : %s\n"%(CTF)) print_msg("Signal-to-Noise Ratio : %f\n"%(snr)) print_msg("Reference projection method : %s\n"%(ref_a)) print_msg("Symmetry group : %s\n"%(sym)) print_msg("Fourier padding for 3D : %i\n"%(recon_pad)) print_msg("Number of reference models : %i\n"%(nrefs)) print_msg("Sort images between models : %s\n"%(sort)) print_msg("Allow images to jump : %s\n"%(mjump)) print_msg("CC cutoff standard dev : %f\n"%(cutoff)) print_msg("Two tail cutoff : %s\n"%(two_tail)) print_msg("Termination pix error : %f\n"%(term)) print_msg("Pixel error cutoff : %s\n"%(pix_cutoff)) print_msg("Restart : %s\n"%(restart)) print_msg("Full output : %s\n"%(full_output)) print_msg("Compare reprojections : %s\n"%(compare_repro)) print_msg("Compare ref free class avgs : %s\n"%(compare_ref_free)) print_msg("Use cutoff from ref free : %s\n"%(ref_free_cutoff)) if protos: print_msg("Protofilament numbers : %s\n"%(proto)) print_msg("Using helical search range : %s\n"%hsearch) if findseam is True: print_msg("Using seam-based reconstruction\n") if hpars != "-1": print_msg("Using hpars : %s\n"%hpars) if vertstep != None: print_msg("Using vertical step : %.2f\n"%vertstep) if save_half is True: print_msg("Saving even/odd halves\n") for i in xrange(100) : print_msg("*") print_msg("\n\n") if maskfile: if type(maskfile) is types.StringType: mask3D = get_image(maskfile) else: mask3D = maskfile else: mask3D = model_circle(last_ring, nx, nx, nx) numr = Numrinit(first_ring, last_ring, rstep, "F") mask2D = model_circle(last_ring,nx,nx) - model_circle(first_ring,nx,nx) fscmask = model_circle(last_ring,nx,nx,nx) if CTF: from filter import filt_ctf from reconstruction_rjh import rec3D_MPI_noCTF if myid == main_node: active = EMUtil.get_all_attributes(stack, 'active') list_of_particles = [] for im in xrange(len(active)): if active[im]: list_of_particles.append(im) del active nima = len(list_of_particles) else: nima = 0 total_nima = bcast_number_to_all(nima, source_node = main_node) if myid != main_node: list_of_particles = [-1]*total_nima list_of_particles = bcast_list_to_all(list_of_particles, source_node = main_node) image_start, image_end = MPI_start_end(total_nima, number_of_proc, myid) # create a list of images for each node list_of_particles = list_of_particles[image_start: image_end] nima = len(list_of_particles) if debug: finfo.write("image_start, image_end: %d %d\n" %(image_start, image_end)) finfo.flush() data = EMData.read_images(stack, list_of_particles) t_zero = Transform({"type":"spider","phi":0,"theta":0,"psi":0,"tx":0,"ty":0}) transmulti = [[t_zero for i in xrange(nrefs)] for j in xrange(nima)] for iref,im in ((iref,im) for iref in xrange(nrefs) for im in xrange(nima)): if nrefs == 1: transmulti[im][iref] = data[im].get_attr("xform.projection") else: # if multi models, keep track of eulers for all models try: transmulti[im][iref] = data[im].get_attr("eulers_txty.%i"%iref) except: data[im].set_attr("eulers_txty.%i"%iref,t_zero) scoremulti = [[0.0 for i in xrange(nrefs)] for j in xrange(nima)] pixelmulti = [[0.0 for i in xrange(nrefs)] for j in xrange(nima)] ref_res = [0.0 for x in xrange(nrefs)] apix = data[0].get_attr('apix_x') # for oplane parameter, create cylindrical mask if oplane is not None and myid == main_node: from hfunctions import createCylMask cmaskf=os.path.join(outdir, "mask3D_cyl.mrc") mask3D = createCylMask(data,ou,lmask,ilmask,cmaskf) # if finding seam of helix, create wedge masks if findseam is True: wedgemask=[] for pf in xrange(nrefs): wedgemask.append(EMData()) # wedgemask option if wcmask is not None: wcmask = get_input_from_string(wcmask) if len(wcmask) != 3: print_msg("Error: wcmask option requires 3 values: x y radius") sys.exit() # determine if particles have helix info: try: data[0].get_attr('h_angle') original_data = [] boxmask = True from hfunctions import createBoxMask except: boxmask = False # prepare particles for im in xrange(nima): data[im].set_attr('ID', list_of_particles[im]) data[im].set_attr('pix_score', int(0)) if CTF: # only phaseflip particles, not full CTF correction ctf_params = data[im].get_attr("ctf") st = Util.infomask(data[im], mask2D, False) data[im] -= st[0] data[im] = filt_ctf(data[im], ctf_params, sign = -1, binary=1) data[im].set_attr('ctf_applied', 1) # for window mask: if boxmask is True: h_angle = data[im].get_attr("h_angle") original_data.append(data[im].copy()) bmask = createBoxMask(nx,apix,ou,lmask,h_angle) data[im]*=bmask del bmask if debug: finfo.write( '%d loaded \n' % nima ) finfo.flush() if myid == main_node: # initialize data for the reference preparation function ref_data = [ mask3D, max(center,0), None, None, None, None ] # for method -1, switch off centering in user function from time import time # this is needed for gathering of pixel errors disps = [] recvcount = [] disps_score = [] recvcount_score = [] for im in xrange(number_of_proc): if( im == main_node ): disps.append(0) disps_score.append(0) else: disps.append(disps[im-1] + recvcount[im-1]) disps_score.append(disps_score[im-1] + recvcount_score[im-1]) ib, ie = MPI_start_end(total_nima, number_of_proc, im) recvcount.append( ie - ib ) recvcount_score.append((ie-ib)*nrefs) pixer = [0.0]*nima cs = [0.0]*3 total_iter = 0 volodd = EMData.read_images(ref_vol, xrange(nrefs)) voleve = EMData.read_images(ref_vol, xrange(nrefs)) if restart: # recreate initial volumes from alignments stored in header itout = "000_00" for iref in xrange(nrefs): if(nrefs == 1): modout = "" else: modout = "_model_%02d"%(iref) if(sort): group = iref for im in xrange(nima): imgroup = data[im].get_attr('group') if imgroup == iref: data[im].set_attr('xform.projection',transmulti[im][iref]) else: group = int(999) for im in xrange(nima): data[im].set_attr('xform.projection',transmulti[im][iref]) fscfile = os.path.join(outdir, "fsc_%s%s"%(itout,modout)) vol[iref], fscc, volodd[iref], voleve[iref] = rec3D_MPI_noCTF(data, sym, fscmask, fscfile, myid, main_node, index = group, npad = recon_pad) if myid == main_node: if helicalrecon: from hfunctions import processHelicalVol vstep=None if vertstep is not None: vstep=(vdp[iref],vdphi[iref]) print_msg("Old rise and twist for model %i : %8.3f, %8.3f\n"%(iref,dp[iref],dphi[iref])) hvals=processHelicalVol(vol[iref],voleve[iref],volodd[iref],iref,outdir,itout, dp[iref],dphi[iref],apix,hsearch,findseam,vstep,wcmask) (vol[iref],voleve[iref],volodd[iref],dp[iref],dphi[iref],vdp[iref],vdphi[iref])=hvals print_msg("New rise and twist for model %i : %8.3f, %8.3f\n"%(iref,dp[iref],dphi[iref])) # get new FSC from symmetrized half volumes fscc = fsc_mask( volodd[iref], voleve[iref], mask3D, rstep, fscfile) else: vol[iref].write_image(os.path.join(outdir, "vol_%s.hdf"%itout),-1) if save_half is True: volodd[iref].write_image(os.path.join(outdir, "volodd_%s.hdf"%itout),-1) voleve[iref].write_image(os.path.join(outdir, "voleve_%s.hdf"%itout),-1) if nmasks > 1: # Read mask for multiplying ref_data[0] = maskF[iref] ref_data[2] = vol[iref] ref_data[3] = fscc # call user-supplied function to prepare reference image, i.e., center and filter it vol[iref], cs,fl = ref_ali3d(ref_data) vol[iref].write_image(os.path.join(outdir, "volf_%s.hdf"%(itout)),-1) if (apix == 1): res_msg = "Models filtered at spatial frequency of:\t" res = fl else: res_msg = "Models filtered at resolution of: \t" res = apix / fl ares = array2string(array(res), precision = 2) print_msg("%s%s\n\n"%(res_msg,ares)) bcast_EMData_to_all(vol[iref], myid, main_node) # write out headers, under MPI writing has to be done sequentially mpi_barrier(MPI_COMM_WORLD) # projection matching for N_step in xrange(lstp): terminate = 0 Iter = -1 while(Iter < max_iter-1 and terminate == 0): Iter += 1 total_iter += 1 itout = "%03g_%02d" %(delta[N_step], Iter) if myid == main_node: print_msg("ITERATION #%3d, inner iteration #%3d\nDelta = %4.1f, an = %5.2f, xrange = %5.2f, yrange = %5.2f, step = %5.2f\n\n"%(N_step, Iter, delta[N_step], an[N_step], xrng[N_step],yrng[N_step],step[N_step])) for iref in xrange(nrefs): if myid == main_node: start_time = time() volft,kb = prep_vol( vol[iref] ) ## constrain projections to out of plane parameter theta1 = None theta2 = None if oplane is not None: theta1 = 90-oplane theta2 = 90+oplane refrings = prepare_refrings( volft, kb, nx, delta[N_step], ref_a, sym, numr, MPI=True, phiEqpsi = "Minus", initial_theta=theta1, delta_theta=theta2) del volft,kb if myid== main_node: print_msg( "Time to prepare projections for model %i: %s\n" % (iref, legibleTime(time()-start_time)) ) start_time = time() for im in xrange( nima ): data[im].set_attr("xform.projection", transmulti[im][iref]) if an[N_step] == -1: t1, peak, pixer[im] = proj_ali_incore(data[im],refrings,numr,xrng[N_step],yrng[N_step],step[N_step],finfo) else: t1, peak, pixer[im] = proj_ali_incore_local(data[im],refrings,numr,xrng[N_step],yrng[N_step],step[N_step],an[N_step],finfo) #data[im].set_attr("xform.projection"%iref, t1) if nrefs > 1: data[im].set_attr("eulers_txty.%i"%iref,t1) scoremulti[im][iref] = peak from pixel_error import max_3D_pixel_error # t1 is the current param, t2 is old t2 = transmulti[im][iref] pixelmulti[im][iref] = max_3D_pixel_error(t1,t2,numr[-3]) transmulti[im][iref] = t1 if myid == main_node: print_msg("Time of alignment for model %i: %s\n"%(iref, legibleTime(time()-start_time))) start_time = time() # gather scoring data from all processors from mpi import mpi_gatherv scoremultisend = sum(scoremulti,[]) pixelmultisend = sum(pixelmulti,[]) tmp = mpi_gatherv(scoremultisend,len(scoremultisend),MPI_FLOAT, recvcount_score, disps_score, MPI_FLOAT, main_node,MPI_COMM_WORLD) tmp1 = mpi_gatherv(pixelmultisend,len(pixelmultisend),MPI_FLOAT, recvcount_score, disps_score, MPI_FLOAT, main_node,MPI_COMM_WORLD) tmp = mpi_bcast(tmp,(total_nima * nrefs), MPI_FLOAT,0, MPI_COMM_WORLD) tmp1 = mpi_bcast(tmp1,(total_nima * nrefs), MPI_FLOAT,0, MPI_COMM_WORLD) tmp = map(float,tmp) tmp1 = map(float,tmp1) score = array(tmp).reshape(-1,nrefs) pixelerror = array(tmp1).reshape(-1,nrefs) score_local = array(scoremulti) mean_score = score.mean(axis=0) std_score = score.std(axis=0) cut = mean_score - (cutoff * std_score) cut2 = mean_score + (cutoff * std_score) res_max = score_local.argmax(axis=1) minus_cc = [0.0 for x in xrange(nrefs)] minus_pix = [0.0 for x in xrange(nrefs)] minus_ref = [0.0 for x in xrange(nrefs)] #output pixel errors if(myid == main_node): from statistics import hist_list lhist = 20 pixmin = pixelerror.min(axis=1) region, histo = hist_list(pixmin, lhist) if(region[0] < 0.0): region[0] = 0.0 print_msg("Histogram of pixel errors\n ERROR number of particles\n") for lhx in xrange(lhist): print_msg(" %10.3f %7d\n"%(region[lhx], histo[lhx])) # Terminate if 95% within 1 pixel error im = 0 for lhx in xrange(lhist): if(region[lhx] > 1.0): break im += histo[lhx] print_msg( "Percent of particles with pixel error < 1: %f\n\n"% (im/float(total_nima)*100)) term_cond = float(term)/100 if(im/float(total_nima) > term_cond): terminate = 1 print_msg("Terminating internal loop\n") del region, histo terminate = mpi_bcast(terminate, 1, MPI_INT, 0, MPI_COMM_WORLD) terminate = int(terminate[0]) for im in xrange(nima): if(sort==False): data[im].set_attr('group',999) elif (mjump[N_step]==1): data[im].set_attr('group',int(res_max[im])) pix_run = data[im].get_attr('pix_score') if (pix_cutoff[N_step]==1 and (terminate==1 or Iter == max_iter-1)): if (pixelmulti[im][int(res_max[im])] > 1): data[im].set_attr('pix_score',int(777)) if (score_local[im][int(res_max[im])]<cut[int(res_max[im])]) or (two_tail and score_local[im][int(res_max[im])]>cut2[int(res_max[im])]): data[im].set_attr('group',int(888)) minus_cc[int(res_max[im])] = minus_cc[int(res_max[im])] + 1 if(pix_run == 777): data[im].set_attr('group',int(777)) minus_pix[int(res_max[im])] = minus_pix[int(res_max[im])] + 1 if (compare_ref_free != "-1") and (ref_free_cutoff[N_step] != -1) and (total_iter > 1): id = data[im].get_attr('ID') if id in rejects: data[im].set_attr('group',int(666)) minus_ref[int(res_max[im])] = minus_ref[int(res_max[im])] + 1 minus_cc_tot = mpi_reduce(minus_cc,nrefs,MPI_FLOAT,MPI_SUM,0,MPI_COMM_WORLD) minus_pix_tot = mpi_reduce(minus_pix,nrefs,MPI_FLOAT,MPI_SUM,0,MPI_COMM_WORLD) minus_ref_tot = mpi_reduce(minus_ref,nrefs,MPI_FLOAT,MPI_SUM,0,MPI_COMM_WORLD) if (myid == main_node): if(sort): tot_max = score.argmax(axis=1) res = bincount(tot_max) else: res = ones(nrefs) * total_nima print_msg("Particle distribution: \t\t%s\n"%(res*1.0)) afcut1 = res - minus_cc_tot afcut2 = afcut1 - minus_pix_tot afcut3 = afcut2 - minus_ref_tot print_msg("Particle distribution after cc cutoff:\t\t%s\n"%(afcut1)) print_msg("Particle distribution after pix cutoff:\t\t%s\n"%(afcut2)) print_msg("Particle distribution after ref cutoff:\t\t%s\n\n"%(afcut3)) res = [0.0 for i in xrange(nrefs)] for iref in xrange(nrefs): if(center == -1): from utilities import estimate_3D_center_MPI, rotate_3D_shift dummy=EMData() cs[0], cs[1], cs[2], dummy, dummy = estimate_3D_center_MPI(data, total_nima, myid, number_of_proc, main_node) cs = mpi_bcast(cs, 3, MPI_FLOAT, main_node, MPI_COMM_WORLD) cs = [-float(cs[0]), -float(cs[1]), -float(cs[2])] rotate_3D_shift(data, cs) if(sort): group = iref for im in xrange(nima): imgroup = data[im].get_attr('group') if imgroup == iref: data[im].set_attr('xform.projection',transmulti[im][iref]) else: group = int(999) for im in xrange(nima): data[im].set_attr('xform.projection',transmulti[im][iref]) if(nrefs == 1): modout = "" else: modout = "_model_%02d"%(iref) fscfile = os.path.join(outdir, "fsc_%s%s"%(itout,modout)) vol[iref], fscc, volodd[iref], voleve[iref] = rec3D_MPI_noCTF(data, sym, fscmask, fscfile, myid, main_node, index=group, npad=recon_pad) if myid == main_node: print_msg("3D reconstruction time for model %i: %s\n"%(iref, legibleTime(time()-start_time))) start_time = time() # Compute Fourier variance if fourvar: outvar = os.path.join(outdir, "volVar_%s.hdf"%(itout)) ssnr_file = os.path.join(outdir, "ssnr_%s"%(itout)) varf = varf3d_MPI(data, ssnr_text_file=ssnr_file, mask2D=None, reference_structure=vol[iref], ou=last_ring, rw=1.0, npad=1, CTF=None, sign=1, sym=sym, myid=myid) if myid == main_node: print_msg("Time to calculate 3D Fourier variance for model %i: %s\n"%(iref, legibleTime(time()-start_time))) start_time = time() varf = 1.0/varf varf.write_image(outvar,-1) else: varf = None if myid == main_node: if helicalrecon: from hfunctions import processHelicalVol vstep=None if vertstep is not None: vstep=(vdp[iref],vdphi[iref]) print_msg("Old rise and twist for model %i : %8.3f, %8.3f\n"%(iref,dp[iref],dphi[iref])) hvals=processHelicalVol(vol[iref],voleve[iref],volodd[iref],iref,outdir,itout, dp[iref],dphi[iref],apix,hsearch,findseam,vstep,wcmask) (vol[iref],voleve[iref],volodd[iref],dp[iref],dphi[iref],vdp[iref],vdphi[iref])=hvals print_msg("New rise and twist for model %i : %8.3f, %8.3f\n"%(iref,dp[iref],dphi[iref])) # get new FSC from symmetrized half volumes fscc = fsc_mask( volodd[iref], voleve[iref], mask3D, rstep, fscfile) print_msg("Time to search and apply helical symmetry for model %i: %s\n\n"%(iref, legibleTime(time()-start_time))) start_time = time() else: vol[iref].write_image(os.path.join(outdir, "vol_%s.hdf"%(itout)),-1) if save_half is True: volodd[iref].write_image(os.path.join(outdir, "volodd_%s.hdf"%(itout)),-1) voleve[iref].write_image(os.path.join(outdir, "voleve_%s.hdf"%(itout)),-1) if nmasks > 1: # Read mask for multiplying ref_data[0] = maskF[iref] ref_data[2] = vol[iref] ref_data[3] = fscc ref_data[4] = varf # call user-supplied function to prepare reference image, i.e., center and filter it vol[iref], cs,fl = ref_ali3d(ref_data) vol[iref].write_image(os.path.join(outdir, "volf_%s.hdf"%(itout)),-1) if (apix == 1): res_msg = "Models filtered at spatial frequency of:\t" res[iref] = fl else: res_msg = "Models filtered at resolution of: \t" res[iref] = apix / fl del varf bcast_EMData_to_all(vol[iref], myid, main_node) if compare_ref_free != "-1": compare_repro = True if compare_repro: outfile_repro = comp_rep(refrings, data, itout, modout, vol[iref], group, nima, nx, myid, main_node, outdir) mpi_barrier(MPI_COMM_WORLD) if compare_ref_free != "-1": ref_free_output = os.path.join(outdir,"ref_free_%s%s"%(itout,modout)) rejects = compare(compare_ref_free, outfile_repro,ref_free_output,yrng[N_step], xrng[N_step], rstep,nx,apix,ref_free_cutoff[N_step], number_of_proc, myid, main_node) # retrieve alignment params from all processors par_str = ['xform.projection','ID','group'] if nrefs > 1: for iref in xrange(nrefs): par_str.append('eulers_txty.%i'%iref) if myid == main_node: from utilities import recv_attr_dict recv_attr_dict(main_node, stack, data, par_str, image_start, image_end, number_of_proc) else: send_attr_dict(main_node, data, par_str, image_start, image_end) if myid == main_node: ares = array2string(array(res), precision = 2) print_msg("%s%s\n\n"%(res_msg,ares)) dummy = EMData() if full_output: nimat = EMUtil.get_image_count(stack) output_file = os.path.join(outdir, "paramout_%s"%itout) foutput = open(output_file, 'w') for im in xrange(nimat): # save the parameters for each of the models outstring = "" dummy.read_image(stack,im,True) param3d = dummy.get_attr('xform.projection') g = dummy.get_attr("group") # retrieve alignments in EMAN-format pE = param3d.get_params('eman') outstring += "%f\t%f\t%f\t%f\t%f\t%i\n" %(pE["az"], pE["alt"], pE["phi"], pE["tx"], pE["ty"],g) foutput.write(outstring) foutput.close() del dummy mpi_barrier(MPI_COMM_WORLD) # mpi_finalize() if myid == main_node: print_end_msg("ali3d_MPI")
def main(): from logger import Logger, BaseLogger_Files arglist = [] i = 0 while( i < len(sys.argv) ): if sys.argv[i]=='-p4pg': i = i+2 elif sys.argv[i]=='-p4wd': i = i+2 else: arglist.append( sys.argv[i] ) i = i+1 progname = os.path.basename(arglist[0]) usage = progname + " stack outdir <mask> --focus=3Dmask --radius=outer_radius --delta=angular_step" +\ "--an=angular_neighborhood --maxit=max_iter --CTF --sym=c1 --function=user_function --independent=indenpendent_runs --number_of_images_per_group=number_of_images_per_group --low_pass_frequency=.25 --seed=random_seed" parser = OptionParser(usage,version=SPARXVERSION) parser.add_option("--focus", type ="string", default ='', help="bineary 3D mask for focused clustering ") parser.add_option("--ir", type = "int", default =1, help="inner radius for rotational correlation > 0 (set to 1)") parser.add_option("--radius", type = "int", default =-1, help="particle radius in pixel for rotational correlation <nx-1 (set to the radius of the particle)") parser.add_option("--maxit", type = "int", default =25, help="maximum number of iteration") parser.add_option("--rs", type = "int", default =1, help="step between rings in rotational correlation >0 (set to 1)" ) parser.add_option("--xr", type ="string", default ='1', help="range for translation search in x direction, search is +/-xr ") parser.add_option("--yr", type ="string", default ='-1', help="range for translation search in y direction, search is +/-yr (default = same as xr)") parser.add_option("--ts", type ="string", default ='0.25', help="step size of the translation search in both directions direction, search is -xr, -xr+ts, 0, xr-ts, xr ") parser.add_option("--delta", type ="string", default ='2', help="angular step of reference projections") parser.add_option("--an", type ="string", default ='-1', help="angular neighborhood for local searches") parser.add_option("--center", type ="int", default =0, help="0 - if you do not want the volume to be centered, 1 - center the volume using cog (default=0)") parser.add_option("--nassign", type ="int", default =1, help="number of reassignment iterations performed for each angular step (set to 3) ") parser.add_option("--nrefine", type ="int", default =0, help="number of alignment iterations performed for each angular step (set to 0)") parser.add_option("--CTF", action ="store_true", default =False, help="do CTF correction during clustring") parser.add_option("--stoprnct", type ="float", default =3.0, help="Minimum percentage of assignment change to stop the program") parser.add_option("--sym", type ="string", default ='c1', help="symmetry of the structure ") parser.add_option("--function", type ="string", default ='do_volume_mrk05', help="name of the reference preparation function") parser.add_option("--independent", type ="int", default = 3, help="number of independent run") parser.add_option("--number_of_images_per_group", type ="int", default =1000, help="number of groups") parser.add_option("--low_pass_filter", type ="float", default =-1.0, help="absolute frequency of low-pass filter for 3d sorting on the original image size" ) parser.add_option("--nxinit", type ="int", default =64, help="initial image size for sorting" ) parser.add_option("--unaccounted", action ="store_true", default =False, help="reconstruct the unaccounted images") parser.add_option("--seed", type ="int", default =-1, help="random seed for create initial random assignment for EQ Kmeans") parser.add_option("--smallest_group", type ="int", default =500, help="minimum members for identified group") parser.add_option("--sausage", action ="store_true", default =False, help="way of filter volume") parser.add_option("--chunkdir", type ="string", default ='', help="chunkdir for computing margin of error") parser.add_option("--PWadjustment", type ="string", default ='', help="1-D power spectrum of PDB file used for EM volume power spectrum correction") parser.add_option("--protein_shape", type ="string", default ='g', help="protein shape. It defines protein preferred orientation angles. Currently it has g and f two types ") parser.add_option("--upscale", type ="float", default =0.5, help=" scaling parameter to adjust the power spectrum of EM volumes") parser.add_option("--wn", type ="int", default =0, help="optimal window size for data processing") parser.add_option("--interpolation", type ="string", default ="4nn", help="3-d reconstruction interpolation method, two options trl and 4nn") (options, args) = parser.parse_args(arglist[1:]) if len(args) < 1 or len(args) > 4: print "usage: " + usage print "Please run '" + progname + " -h' for detailed options" else: if len(args)>2: mask_file = args[2] else: mask_file = None orgstack =args[0] masterdir =args[1] global_def.BATCH = True #---initialize MPI related variables from mpi import mpi_init, mpi_comm_size, MPI_COMM_WORLD, mpi_comm_rank,mpi_barrier,mpi_bcast, mpi_bcast, MPI_INT,MPI_CHAR sys.argv = mpi_init(len(sys.argv),sys.argv) nproc = mpi_comm_size(MPI_COMM_WORLD) myid = mpi_comm_rank(MPI_COMM_WORLD) mpi_comm = MPI_COMM_WORLD main_node= 0 # import some utilities from utilities import get_im,bcast_number_to_all,cmdexecute,write_text_file,read_text_file,wrap_mpi_bcast, get_params_proj, write_text_row from applications import recons3d_n_MPI, mref_ali3d_MPI, Kmref_ali3d_MPI from statistics import k_means_match_clusters_asg_new,k_means_stab_bbenum from applications import mref_ali3d_EQ_Kmeans, ali3d_mref_Kmeans_MPI # Create the main log file from logger import Logger,BaseLogger_Files if myid ==main_node: log_main=Logger(BaseLogger_Files()) log_main.prefix = masterdir+"/" else: log_main =None #--- fill input parameters into dictionary named after Constants Constants ={} Constants["stack"] = args[0] Constants["masterdir"] = masterdir Constants["mask3D"] = mask_file Constants["focus3Dmask"] = options.focus Constants["indep_runs"] = options.independent Constants["stoprnct"] = options.stoprnct Constants["number_of_images_per_group"] = options.number_of_images_per_group Constants["CTF"] = options.CTF Constants["maxit"] = options.maxit Constants["ir"] = options.ir Constants["radius"] = options.radius Constants["nassign"] = options.nassign Constants["rs"] = options.rs Constants["xr"] = options.xr Constants["yr"] = options.yr Constants["ts"] = options.ts Constants["delta"] = options.delta Constants["an"] = options.an Constants["sym"] = options.sym Constants["center"] = options.center Constants["nrefine"] = options.nrefine #Constants["fourvar"] = options.fourvar Constants["user_func"] = options.function Constants["low_pass_filter"] = options.low_pass_filter # enforced low_pass_filter #Constants["debug"] = options.debug Constants["main_log_prefix"] = args[1] #Constants["importali3d"] = options.importali3d Constants["myid"] = myid Constants["main_node"] = main_node Constants["nproc"] = nproc Constants["log_main"] = log_main Constants["nxinit"] = options.nxinit Constants["unaccounted"] = options.unaccounted Constants["seed"] = options.seed Constants["smallest_group"] = options.smallest_group Constants["sausage"] = options.sausage Constants["chunkdir"] = options.chunkdir Constants["PWadjustment"] = options.PWadjustment Constants["upscale"] = options.upscale Constants["wn"] = options.wn Constants["3d-interpolation"] = options.interpolation Constants["protein_shape"] = options.protein_shape # ----------------------------------------------------- # # Create and initialize Tracker dictionary with input options Tracker = {} Tracker["constants"] = Constants Tracker["maxit"] = Tracker["constants"]["maxit"] Tracker["radius"] = Tracker["constants"]["radius"] #Tracker["xr"] = "" #Tracker["yr"] = "-1" # Do not change! #Tracker["ts"] = 1 #Tracker["an"] = "-1" #Tracker["delta"] = "2.0" #Tracker["zoom"] = True #Tracker["nsoft"] = 0 #Tracker["local"] = False #Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"] Tracker["upscale"] = Tracker["constants"]["upscale"] #Tracker["upscale"] = 0.5 Tracker["applyctf"] = False # Should the data be premultiplied by the CTF. Set to False for local continuous. #Tracker["refvol"] = None Tracker["nxinit"] = Tracker["constants"]["nxinit"] #Tracker["nxstep"] = 32 Tracker["icurrentres"] = -1 #Tracker["ireachedres"] = -1 #Tracker["lowpass"] = 0.4 #Tracker["falloff"] = 0.2 #Tracker["inires"] = options.inires # Now in A, convert to absolute before using Tracker["fuse_freq"] = 50 # Now in A, convert to absolute before using #Tracker["delpreviousmax"] = False #Tracker["anger"] = -1.0 #Tracker["shifter"] = -1.0 #Tracker["saturatecrit"] = 0.95 #Tracker["pixercutoff"] = 2.0 #Tracker["directory"] = "" #Tracker["previousoutputdir"] = "" #Tracker["eliminated-outliers"] = False #Tracker["mainiteration"] = 0 #Tracker["movedback"] = False #Tracker["state"] = Tracker["constants"]["states"][0] #Tracker["global_resolution"] =0.0 Tracker["orgstack"] = orgstack #-------------------------------------------------------------------- # import from utilities from utilities import sample_down_1D_curve,get_initial_ID,remove_small_groups,print_upper_triangular_matrix,print_a_line_with_timestamp from utilities import print_dict,get_resolution_mrk01,partition_to_groups,partition_independent_runs,get_outliers from utilities import merge_groups, save_alist, margin_of_error, get_margin_of_error, do_two_way_comparison, select_two_runs, get_ali3d_params from utilities import counting_projections, unload_dict, load_dict, get_stat_proj, create_random_list, get_number_of_groups, recons_mref from utilities import apply_low_pass_filter, get_groups_from_partition, get_number_of_groups, get_complementary_elements_total, update_full_dict from utilities import count_chunk_members, set_filter_parameters_from_adjusted_fsc, adjust_fsc_down, get_two_chunks_from_stack ####------------------------------------------------------------------ # # Get the pixel size; if none, set to 1.0, and the original image size from utilities import get_shrink_data_huang if(myid == main_node): line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" print(line+"Initialization of 3-D sorting") a = get_im(orgstack) nnxo = a.get_xsize() if( Tracker["nxinit"] > nnxo ): ERROR("Image size less than minimum permitted $d"%Tracker["nxinit"],"sxsort3d.py",1) nnxo = -1 else: if Tracker["constants"]["CTF"]: i = a.get_attr('ctf') pixel_size = i.apix fq = pixel_size/Tracker["fuse_freq"] else: pixel_size = 1.0 # No pixel size, fusing computed as 5 Fourier pixels fq = 5.0/nnxo del a else: nnxo = 0 fq = 0.0 pixel_size = 1.0 nnxo = bcast_number_to_all(nnxo, source_node = main_node) if( nnxo < 0 ): mpi_finalize() exit() pixel_size = bcast_number_to_all(pixel_size, source_node = main_node) fq = bcast_number_to_all(fq, source_node = main_node) if Tracker["constants"]["wn"]==0: Tracker["constants"]["nnxo"] = nnxo else: Tracker["constants"]["nnxo"] = Tracker["constants"]["wn"] nnxo = Tracker["constants"]["nnxo"] Tracker["constants"]["pixel_size"] = pixel_size Tracker["fuse_freq"] = fq del fq, nnxo, pixel_size if(Tracker["constants"]["radius"] < 1): Tracker["constants"]["radius"] = Tracker["constants"]["nnxo"]//2-2 elif((2*Tracker["constants"]["radius"] +2) > Tracker["constants"]["nnxo"]): ERROR("Particle radius set too large!","sxsort3d.py",1,myid) ####----------------------------------------------------------------------------------------- # Master directory if myid == main_node: if masterdir =="": timestring = strftime("_%d_%b_%Y_%H_%M_%S", localtime()) masterdir ="master_sort3d"+timestring li =len(masterdir) cmd="{} {}".format("mkdir", masterdir) os.system(cmd) else: li=0 li = mpi_bcast(li,1,MPI_INT,main_node,MPI_COMM_WORLD)[0] if li>0: masterdir = mpi_bcast(masterdir,li,MPI_CHAR,main_node,MPI_COMM_WORLD) import string masterdir = string.join(masterdir,"") if myid ==main_node: print_dict(Tracker["constants"],"Permanent settings of 3-D sorting program") ######### create a vstack from input stack to the local stack in masterdir # stack name set to default Tracker["constants"]["stack"] = "bdb:"+masterdir+"/rdata" Tracker["constants"]["ali3d"] = os.path.join(masterdir, "ali3d_init.txt") Tracker["constants"]["ctf_params"] = os.path.join(masterdir, "ctf_params.txt") Tracker["constants"]["partstack"] = Tracker["constants"]["ali3d"] # also serves for refinement if myid == main_node: total_stack = EMUtil.get_image_count(Tracker["orgstack"]) else: total_stack = 0 total_stack = bcast_number_to_all(total_stack, source_node = main_node) mpi_barrier(MPI_COMM_WORLD) from time import sleep while not os.path.exists(masterdir): print "Node ",myid," waiting..." sleep(5) mpi_barrier(MPI_COMM_WORLD) if myid == main_node: log_main.add("Sphire sort3d ") log_main.add("the sort3d master directory is "+masterdir) ##### ###---------------------------------------------------------------------------------- # Initial data analysis and handle two chunk files from random import shuffle # Compute the resolution #### make chunkdir dictionary for computing margin of error import user_functions user_func = user_functions.factory[Tracker["constants"]["user_func"]] chunk_dict = {} chunk_list = [] if myid == main_node: chunk_one = read_text_file(os.path.join(Tracker["constants"]["chunkdir"],"chunk0.txt")) chunk_two = read_text_file(os.path.join(Tracker["constants"]["chunkdir"],"chunk1.txt")) else: chunk_one = 0 chunk_two = 0 chunk_one = wrap_mpi_bcast(chunk_one, main_node) chunk_two = wrap_mpi_bcast(chunk_two, main_node) mpi_barrier(MPI_COMM_WORLD) ######################## Read/write bdb: data on main node ############################ if myid==main_node: if(orgstack[:4] == "bdb:"): cmd = "{} {} {}".format("e2bdb.py", orgstack,"--makevstack="+Tracker["constants"]["stack"]) else: cmd = "{} {} {}".format("sxcpy.py", orgstack, Tracker["constants"]["stack"]) cmdexecute(cmd) cmd = "{} {} {}".format("sxheader.py --params=xform.projection", "--export="+Tracker["constants"]["ali3d"],orgstack) cmdexecute(cmd) cmd = "{} {} {}".format("sxheader.py --params=ctf", "--export="+Tracker["constants"]["ctf_params"],orgstack) cmdexecute(cmd) mpi_barrier(MPI_COMM_WORLD) ########----------------------------------------------------------------------------- Tracker["total_stack"] = total_stack Tracker["constants"]["total_stack"] = total_stack Tracker["shrinkage"] = float(Tracker["nxinit"])/Tracker["constants"]["nnxo"] Tracker["radius"] = Tracker["constants"]["radius"]*Tracker["shrinkage"] if Tracker["constants"]["mask3D"]: Tracker["mask3D"] = os.path.join(masterdir,"smask.hdf") else: Tracker["mask3D"] = None if Tracker["constants"]["focus3Dmask"]: Tracker["focus3D"] = os.path.join(masterdir,"sfocus.hdf") else: Tracker["focus3D"] = None if myid == main_node: if Tracker["constants"]["mask3D"]: mask_3D = get_shrink_3dmask(Tracker["nxinit"],Tracker["constants"]["mask3D"]) mask_3D.write_image(Tracker["mask3D"]) if Tracker["constants"]["focus3Dmask"]: mask_3D = get_shrink_3dmask(Tracker["nxinit"],Tracker["constants"]["focus3Dmask"]) st = Util.infomask(mask_3D, None, True) if( st[0] == 0.0 ): ERROR("sxrsort3d","incorrect focused mask, after binarize all values zero",1) mask_3D.write_image(Tracker["focus3D"]) del mask_3D if Tracker["constants"]["PWadjustment"] !='': PW_dict = {} nxinit_pwsp = sample_down_1D_curve(Tracker["constants"]["nxinit"],Tracker["constants"]["nnxo"],Tracker["constants"]["PWadjustment"]) Tracker["nxinit_PW"] = os.path.join(masterdir,"spwp.txt") if myid == main_node: write_text_file(nxinit_pwsp,Tracker["nxinit_PW"]) PW_dict[Tracker["constants"]["nnxo"]] = Tracker["constants"]["PWadjustment"] PW_dict[Tracker["constants"]["nxinit"]] = Tracker["nxinit_PW"] Tracker["PW_dict"] = PW_dict mpi_barrier(MPI_COMM_WORLD) #-----------------------From two chunks to FSC, and low pass filter-----------------------------------------### for element in chunk_one: chunk_dict[element] = 0 for element in chunk_two: chunk_dict[element] = 1 chunk_list =[chunk_one, chunk_two] Tracker["chunk_dict"] = chunk_dict Tracker["P_chunk0"] = len(chunk_one)/float(total_stack) Tracker["P_chunk1"] = len(chunk_two)/float(total_stack) ### create two volumes to estimate resolution if myid == main_node: for index in xrange(2): write_text_file(chunk_list[index],os.path.join(masterdir,"chunk%01d.txt"%index)) mpi_barrier(MPI_COMM_WORLD) vols = [] for index in xrange(2): data,old_shifts = get_shrink_data_huang(Tracker,Tracker["constants"]["nxinit"], os.path.join(masterdir,"chunk%01d.txt"%index), Tracker["constants"]["partstack"],myid,main_node,nproc,preshift=True) vol = recons3d_4nn_ctf_MPI(myid=myid, prjlist=data,symmetry=Tracker["constants"]["sym"], finfo=None) if myid == main_node: vol.write_image(os.path.join(masterdir, "vol%d.hdf"%index)) vols.append(vol) mpi_barrier(MPI_COMM_WORLD) if myid ==main_node: low_pass, falloff,currentres = get_resolution_mrk01(vols,Tracker["constants"]["radius"],Tracker["constants"]["nxinit"],masterdir,Tracker["mask3D"]) if low_pass >Tracker["constants"]["low_pass_filter"]: low_pass= Tracker["constants"]["low_pass_filter"] else: low_pass =0.0 falloff =0.0 currentres =0.0 bcast_number_to_all(currentres,source_node = main_node) bcast_number_to_all(low_pass,source_node = main_node) bcast_number_to_all(falloff,source_node = main_node) Tracker["currentres"] = currentres Tracker["falloff"] = falloff if Tracker["constants"]["low_pass_filter"] ==-1.0: Tracker["low_pass_filter"] = min(.45,low_pass/Tracker["shrinkage"]) # no better than .45 else: Tracker["low_pass_filter"] = min(.45,Tracker["constants"]["low_pass_filter"]/Tracker["shrinkage"]) Tracker["lowpass"] = Tracker["low_pass_filter"] Tracker["falloff"] =.1 Tracker["global_fsc"] = os.path.join(masterdir, "fsc.txt") ############################################################################################ if myid == main_node: log_main.add("The command-line inputs are as following:") log_main.add("**********************************************************") for a in sys.argv: if myid == main_node:log_main.add(a) if myid == main_node: log_main.add("number of cpus used in this run is %d"%Tracker["constants"]["nproc"]) log_main.add("**********************************************************") from filter import filt_tanl ### START 3-D sorting if myid ==main_node: log_main.add("----------3-D sorting program------- ") log_main.add("current resolution %6.3f for images of original size in terms of absolute frequency"%Tracker["currentres"]) log_main.add("equivalent to %f Angstrom resolution"%(Tracker["constants"]["pixel_size"]/Tracker["currentres"]/Tracker["shrinkage"])) log_main.add("the user provided enforced low_pass_filter is %f"%Tracker["constants"]["low_pass_filter"]) #log_main.add("equivalent to %f Angstrom resolution"%(Tracker["constants"]["pixel_size"]/Tracker["constants"]["low_pass_filter"])) for index in xrange(2): filt_tanl(get_im(os.path.join(masterdir,"vol%01d.hdf"%index)), Tracker["low_pass_filter"],Tracker["falloff"]).write_image(os.path.join(masterdir, "volf%01d.hdf"%index)) mpi_barrier(MPI_COMM_WORLD) from utilities import get_input_from_string delta = get_input_from_string(Tracker["constants"]["delta"]) delta = delta[0] from utilities import even_angles n_angles = even_angles(delta, 0, 180) this_ali3d = Tracker["constants"]["ali3d"] sampled = get_stat_proj(Tracker,delta,this_ali3d) if myid ==main_node: nc = 0 for a in sampled: if len(sampled[a])>0: nc += 1 log_main.add("total sampled direction %10d at angle step %6.3f"%(len(n_angles), delta)) log_main.add("captured sampled directions %10d percentage covered by data %6.3f"%(nc,float(nc)/len(n_angles)*100)) number_of_images_per_group = Tracker["constants"]["number_of_images_per_group"] if myid ==main_node: log_main.add("user provided number_of_images_per_group %d"%number_of_images_per_group) Tracker["number_of_images_per_group"] = number_of_images_per_group number_of_groups = get_number_of_groups(total_stack,number_of_images_per_group) Tracker["number_of_groups"] = number_of_groups generation =0 partition_dict ={} full_dict ={} workdir =os.path.join(masterdir,"generation%03d"%generation) Tracker["this_dir"] = workdir if myid ==main_node: log_main.add("---- generation %5d"%generation) log_main.add("number of images per group is set as %d"%number_of_images_per_group) log_main.add("the initial number of groups is %10d "%number_of_groups) cmd="{} {}".format("mkdir",workdir) os.system(cmd) mpi_barrier(MPI_COMM_WORLD) list_to_be_processed = range(Tracker["constants"]["total_stack"]) Tracker["this_data_list"] = list_to_be_processed create_random_list(Tracker) ################################# full_dict ={} for iptl in xrange(Tracker["constants"]["total_stack"]): full_dict[iptl] = iptl Tracker["full_ID_dict"] = full_dict ################################# for indep_run in xrange(Tracker["constants"]["indep_runs"]): Tracker["this_particle_list"] = Tracker["this_indep_list"][indep_run] ref_vol = recons_mref(Tracker) if myid == main_node: log_main.add("independent run %10d"%indep_run) mpi_barrier(MPI_COMM_WORLD) Tracker["this_data_list"] = list_to_be_processed Tracker["total_stack"] = len(Tracker["this_data_list"]) Tracker["this_particle_text_file"] = os.path.join(workdir,"independent_list_%03d.txt"%indep_run) # for get_shrink_data if myid == main_node: write_text_file(Tracker["this_data_list"], Tracker["this_particle_text_file"]) mpi_barrier(MPI_COMM_WORLD) outdir = os.path.join(workdir, "EQ_Kmeans%03d"%indep_run) ref_vol = apply_low_pass_filter(ref_vol,Tracker) mref_ali3d_EQ_Kmeans(ref_vol, outdir, Tracker["this_particle_text_file"], Tracker) partition_dict[indep_run]=Tracker["this_partition"] Tracker["partition_dict"] = partition_dict Tracker["total_stack"] = len(Tracker["this_data_list"]) Tracker["this_total_stack"] = Tracker["total_stack"] ############################### do_two_way_comparison(Tracker) ############################### ref_vol_list = [] from time import sleep number_of_ref_class = [] for igrp in xrange(len(Tracker["two_way_stable_member"])): Tracker["this_data_list"] = Tracker["two_way_stable_member"][igrp] Tracker["this_data_list_file"] = os.path.join(workdir,"stable_class%d.txt"%igrp) if myid == main_node: write_text_file(Tracker["this_data_list"], Tracker["this_data_list_file"]) data,old_shifts = get_shrink_data_huang(Tracker,Tracker["nxinit"], Tracker["this_data_list_file"], Tracker["constants"]["partstack"], myid, main_node, nproc, preshift = True) volref = recons3d_4nn_ctf_MPI(myid=myid, prjlist = data, symmetry=Tracker["constants"]["sym"], finfo = None) ref_vol_list.append(volref) number_of_ref_class.append(len(Tracker["this_data_list"])) if myid == main_node: log_main.add("group %d members %d "%(igrp,len(Tracker["this_data_list"]))) Tracker["number_of_ref_class"] = number_of_ref_class nx_of_image = ref_vol_list[0].get_xsize() if Tracker["constants"]["PWadjustment"]: Tracker["PWadjustment"] = Tracker["PW_dict"][nx_of_image] else: Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"] # no PW adjustment if myid == main_node: for iref in xrange(len(ref_vol_list)): refdata = [None]*4 refdata[0] = ref_vol_list[iref] refdata[1] = Tracker refdata[2] = Tracker["constants"]["myid"] refdata[3] = Tracker["constants"]["nproc"] volref = user_func(refdata) volref.write_image(os.path.join(workdir,"volf_stable.hdf"),iref) mpi_barrier(MPI_COMM_WORLD) Tracker["this_data_list"] = Tracker["this_accounted_list"] outdir = os.path.join(workdir,"Kmref") empty_group, res_groups, final_list = ali3d_mref_Kmeans_MPI(ref_vol_list,outdir,Tracker["this_accounted_text"],Tracker) Tracker["this_unaccounted_list"] = get_complementary_elements(list_to_be_processed,final_list) if myid == main_node: log_main.add("the number of particles not processed is %d"%len(Tracker["this_unaccounted_list"])) write_text_file(Tracker["this_unaccounted_list"],Tracker["this_unaccounted_text"]) update_full_dict(Tracker["this_unaccounted_list"], Tracker) ####################################### number_of_groups = len(res_groups) vol_list = [] number_of_ref_class = [] for igrp in xrange(number_of_groups): data,old_shifts = get_shrink_data_huang(Tracker, Tracker["constants"]["nnxo"], os.path.join(outdir,"Class%d.txt"%igrp), Tracker["constants"]["partstack"],myid,main_node,nproc,preshift = True) volref = recons3d_4nn_ctf_MPI(myid=myid, prjlist = data, symmetry=Tracker["constants"]["sym"], finfo=None) vol_list.append(volref) if( myid == main_node ): npergroup = len(read_text_file(os.path.join(outdir,"Class%d.txt"%igrp))) else: npergroup = 0 npergroup = bcast_number_to_all(npergroup, main_node ) number_of_ref_class.append(npergroup) Tracker["number_of_ref_class"] = number_of_ref_class mpi_barrier(MPI_COMM_WORLD) nx_of_image = vol_list[0].get_xsize() if Tracker["constants"]["PWadjustment"]: Tracker["PWadjustment"]=Tracker["PW_dict"][nx_of_image] else: Tracker["PWadjustment"]=Tracker["constants"]["PWadjustment"] if myid == main_node: for ivol in xrange(len(vol_list)): refdata =[None]*4 refdata[0] = vol_list[ivol] refdata[1] = Tracker refdata[2] = Tracker["constants"]["myid"] refdata[3] = Tracker["constants"]["nproc"] volref = user_func(refdata) volref.write_image(os.path.join(workdir,"volf_of_Classes.hdf"),ivol) log_main.add("number of unaccounted particles %10d"%len(Tracker["this_unaccounted_list"])) log_main.add("number of accounted particles %10d"%len(Tracker["this_accounted_list"])) Tracker["this_data_list"] = Tracker["this_unaccounted_list"] # reset parameters for the next round calculation Tracker["total_stack"] = len(Tracker["this_unaccounted_list"]) Tracker["this_total_stack"] = Tracker["total_stack"] number_of_groups = get_number_of_groups(len(Tracker["this_unaccounted_list"]),number_of_images_per_group) Tracker["number_of_groups"] = number_of_groups while number_of_groups >= 2 : generation +=1 partition_dict ={} workdir =os.path.join(masterdir,"generation%03d"%generation) Tracker["this_dir"] = workdir if myid ==main_node: log_main.add("*********************************************") log_main.add("----- generation %5d "%generation) log_main.add("number of images per group is set as %10d "%number_of_images_per_group) log_main.add("the number of groups is %10d "%number_of_groups) log_main.add(" number of particles for clustering is %10d"%Tracker["total_stack"]) cmd ="{} {}".format("mkdir",workdir) os.system(cmd) mpi_barrier(MPI_COMM_WORLD) create_random_list(Tracker) for indep_run in xrange(Tracker["constants"]["indep_runs"]): Tracker["this_particle_list"] = Tracker["this_indep_list"][indep_run] ref_vol = recons_mref(Tracker) if myid == main_node: log_main.add("independent run %10d"%indep_run) outdir = os.path.join(workdir, "EQ_Kmeans%03d"%indep_run) Tracker["this_data_list"] = Tracker["this_unaccounted_list"] #ref_vol=apply_low_pass_filter(ref_vol,Tracker) mref_ali3d_EQ_Kmeans(ref_vol,outdir,Tracker["this_unaccounted_text"],Tracker) partition_dict[indep_run] = Tracker["this_partition"] Tracker["this_data_list"] = Tracker["this_unaccounted_list"] Tracker["total_stack"] = len(Tracker["this_unaccounted_list"]) Tracker["partition_dict"] = partition_dict Tracker["this_total_stack"] = Tracker["total_stack"] total_list_of_this_run = Tracker["this_unaccounted_list"] ############################### do_two_way_comparison(Tracker) ############################### ref_vol_list = [] number_of_ref_class = [] for igrp in xrange(len(Tracker["two_way_stable_member"])): Tracker["this_data_list"] = Tracker["two_way_stable_member"][igrp] Tracker["this_data_list_file"] = os.path.join(workdir,"stable_class%d.txt"%igrp) if myid == main_node: write_text_file(Tracker["this_data_list"], Tracker["this_data_list_file"]) mpi_barrier(MPI_COMM_WORLD) data,old_shifts = get_shrink_data_huang(Tracker,Tracker["constants"]["nxinit"],Tracker["this_data_list_file"],Tracker["constants"]["partstack"],myid,main_node,nproc,preshift = True) volref = recons3d_4nn_ctf_MPI(myid=myid, prjlist = data, symmetry=Tracker["constants"]["sym"],finfo= None) #volref = filt_tanl(volref, Tracker["constants"]["low_pass_filter"],.1) if myid == main_node:volref.write_image(os.path.join(workdir,"vol_stable.hdf"),iref) #volref = resample(volref,Tracker["shrinkage"]) ref_vol_list.append(volref) number_of_ref_class.append(len(Tracker["this_data_list"])) mpi_barrier(MPI_COMM_WORLD) Tracker["number_of_ref_class"] = number_of_ref_class Tracker["this_data_list"] = Tracker["this_accounted_list"] outdir = os.path.join(workdir,"Kmref") empty_group, res_groups, final_list = ali3d_mref_Kmeans_MPI(ref_vol_list,outdir,Tracker["this_accounted_text"],Tracker) # calculate the 3-D structure of original image size for each group number_of_groups = len(res_groups) Tracker["this_unaccounted_list"] = get_complementary_elements(total_list_of_this_run,final_list) if myid == main_node: log_main.add("the number of particles not processed is %d"%len(Tracker["this_unaccounted_list"])) write_text_file(Tracker["this_unaccounted_list"],Tracker["this_unaccounted_text"]) mpi_barrier(MPI_COMM_WORLD) update_full_dict(Tracker["this_unaccounted_list"],Tracker) vol_list = [] for igrp in xrange(number_of_groups): data,old_shifts = get_shrink_data_huang(Tracker,Tracker["constants"]["nnxo"], os.path.join(outdir,"Class%d.txt"%igrp), Tracker["constants"]["partstack"], myid, main_node, nproc,preshift = True) volref = recons3d_4nn_ctf_MPI(myid=myid, prjlist = data, symmetry=Tracker["constants"]["sym"],finfo= None) vol_list.append(volref) mpi_barrier(MPI_COMM_WORLD) nx_of_image=ref_vol_list[0].get_xsize() if Tracker["constants"]["PWadjustment"]: Tracker["PWadjustment"] = Tracker["PW_dict"][nx_of_image] else: Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"] if myid == main_node: for ivol in xrange(len(vol_list)): refdata = [None]*4 refdata[0] = vol_list[ivol] refdata[1] = Tracker refdata[2] = Tracker["constants"]["myid"] refdata[3] = Tracker["constants"]["nproc"] volref = user_func(refdata) volref.write_image(os.path.join(workdir, "volf_of_Classes.hdf"),ivol) log_main.add("number of unaccounted particles %10d"%len(Tracker["this_unaccounted_list"])) log_main.add("number of accounted particles %10d"%len(Tracker["this_accounted_list"])) del vol_list mpi_barrier(MPI_COMM_WORLD) number_of_groups = get_number_of_groups(len(Tracker["this_unaccounted_list"]),number_of_images_per_group) Tracker["number_of_groups"] = number_of_groups Tracker["this_data_list"] = Tracker["this_unaccounted_list"] Tracker["total_stack"] = len(Tracker["this_unaccounted_list"]) if Tracker["constants"]["unaccounted"]: data,old_shifts = get_shrink_data_huang(Tracker,Tracker["constants"]["nnxo"],Tracker["this_unaccounted_text"],Tracker["constants"]["partstack"],myid,main_node,nproc,preshift = True) volref = recons3d_4nn_ctf_MPI(myid=myid, prjlist = data, symmetry=Tracker["constants"]["sym"],finfo= None) nx_of_image = volref.get_xsize() if Tracker["constants"]["PWadjustment"]: Tracker["PWadjustment"]=Tracker["PW_dict"][nx_of_image] else: Tracker["PWadjustment"]=Tracker["constants"]["PWadjustment"] if( myid == main_node ): refdata = [None]*4 refdata[0] = volref refdata[1] = Tracker refdata[2] = Tracker["constants"]["myid"] refdata[3] = Tracker["constants"]["nproc"] volref = user_func(refdata) #volref = filt_tanl(volref, Tracker["constants"]["low_pass_filter"],.1) volref.write_image(os.path.join(workdir,"volf_unaccounted.hdf")) # Finish program if myid ==main_node: log_main.add("sxsort3d finishes") mpi_barrier(MPI_COMM_WORLD) from mpi import mpi_finalize mpi_finalize() exit()
def main(): import global_def from optparse import OptionParser from EMAN2 import EMUtil import os import sys from time import time progname = os.path.basename(sys.argv[0]) usage = progname + " proj_stack output_averages --MPI" parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--img_per_group",type="int" , default=100 , help="number of images per group" ) parser.add_option("--radius", type="int" , default=-1 , help="radius for alignment" ) parser.add_option("--xr", type="string" , default="2 1", help="range for translation search in x direction, search is +/xr") parser.add_option("--yr", type="string" , default="-1", help="range for translation search in y direction, search is +/yr (default = same as xr)") parser.add_option("--ts", type="string" , default="1 0.5", help="step size of the translation search in both directions, search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional") parser.add_option("--iter", type="int" , default=30, help="number of iterations within alignment (default = 30)" ) parser.add_option("--num_ali", type="int" , default=5, help="number of alignments performed for stability (default = 5)" ) parser.add_option("--thld_err", type="float" , default=1.0, help="threshold of pixel error (default = 1.732)" ) parser.add_option("--grouping" , type="string" , default="GRP", help="do grouping of projections: PPR - per projection, GRP - different size groups, exclusive (default), GEV - grouping equal size") parser.add_option("--delta", type="float" , default=-1.0, help="angular step for reference projections (required for GEV method)") parser.add_option("--fl", type="float" , default=0.3, help="cut-off frequency of hyperbolic tangent low-pass Fourier filter") parser.add_option("--aa", type="float" , default=0.2, help="fall-off of hyperbolic tangent low-pass Fourier filter") parser.add_option("--CTF", action="store_true", default=False, help="Consider CTF correction during the alignment ") parser.add_option("--MPI" , action="store_true", default=False, help="use MPI version") (options,args) = parser.parse_args() from mpi import mpi_init, mpi_comm_rank, mpi_comm_size, MPI_COMM_WORLD, MPI_TAG_UB from mpi import mpi_barrier, mpi_send, mpi_recv, mpi_bcast, MPI_INT, mpi_finalize, MPI_FLOAT from applications import MPI_start_end, within_group_refinement, ali2d_ras from pixel_error import multi_align_stability from utilities import send_EMData, recv_EMData from utilities import get_image, bcast_number_to_all, set_params2D, get_params2D from utilities import group_proj_by_phitheta, model_circle, get_input_from_string sys.argv = mpi_init(len(sys.argv), sys.argv) myid = mpi_comm_rank(MPI_COMM_WORLD) number_of_proc = mpi_comm_size(MPI_COMM_WORLD) main_node = 0 if len(args) == 2: stack = args[0] outdir = args[1] else: ERROR("incomplete list of arguments", "sxproj_stability", 1, myid=myid) exit() if not options.MPI: ERROR("Non-MPI not supported!", "sxproj_stability", myid=myid) exit() if global_def.CACHE_DISABLE: from utilities import disable_bdb_cache disable_bdb_cache() global_def.BATCH = True #if os.path.exists(outdir): ERROR('Output directory exists, please change the name and restart the program', "sxproj_stability", 1, myid) #mpi_barrier(MPI_COMM_WORLD) img_per_grp = options.img_per_group radius = options.radius ite = options.iter num_ali = options.num_ali thld_err = options.thld_err xrng = get_input_from_string(options.xr) if options.yr == "-1": yrng = xrng else : yrng = get_input_from_string(options.yr) step = get_input_from_string(options.ts) if myid == main_node: nima = EMUtil.get_image_count(stack) img = get_image(stack) nx = img.get_xsize() ny = img.get_ysize() else: nima = 0 nx = 0 ny = 0 nima = bcast_number_to_all(nima) nx = bcast_number_to_all(nx) ny = bcast_number_to_all(ny) if radius == -1: radius = nx/2-2 mask = model_circle(radius, nx, nx) st = time() if options.grouping == "GRP": if myid == main_node: print " A ",myid," ",time()-st proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") proj_params = [] for i in xrange(nima): dp = proj_attr[i].get_params("spider") phi, theta, psi, s2x, s2y = dp["phi"], dp["theta"], dp["psi"], -dp["tx"], -dp["ty"] proj_params.append([phi, theta, psi, s2x, s2y]) # Here is where the grouping is done, I didn't put enough annotation in the group_proj_by_phitheta, # So I will briefly explain it here # proj_list : Returns a list of list of particle numbers, each list contains img_per_grp particle numbers # except for the last one. Depending on the number of particles left, they will either form a # group or append themselves to the last group # angle_list : Also returns a list of list, each list contains three numbers (phi, theta, delta), (phi, # theta) is the projection angle of the center of the group, delta is the range of this group # mirror_list: Also returns a list of list, each list contains img_per_grp True or False, which indicates # whether it should take mirror position. # In this program angle_list and mirror list are not of interest. proj_list_all, angle_list, mirror_list = group_proj_by_phitheta(proj_params, img_per_grp=img_per_grp) del proj_params print " B number of groups ",myid," ",len(proj_list_all),time()-st mpi_barrier(MPI_COMM_WORLD) # Number of groups, actually there could be one or two more groups, since the size of the remaining group varies # we will simply assign them to main node. n_grp = nima/img_per_grp-1 # Divide proj_list_all equally to all nodes, and becomes proj_list proj_list = [] for i in xrange(n_grp): proc_to_stay = i%number_of_proc if proc_to_stay == main_node: if myid == main_node: proj_list.append(proj_list_all[i]) elif myid == main_node: mpi_send(len(proj_list_all[i]), 1, MPI_INT, proc_to_stay, MPI_TAG_UB, MPI_COMM_WORLD) mpi_send(proj_list_all[i], len(proj_list_all[i]), MPI_INT, proc_to_stay, MPI_TAG_UB, MPI_COMM_WORLD) elif myid == proc_to_stay: img_per_grp = mpi_recv(1, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) img_per_grp = int(img_per_grp[0]) temp = mpi_recv(img_per_grp, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) proj_list.append(map(int, temp)) del temp mpi_barrier(MPI_COMM_WORLD) print " C ",myid," ",time()-st if myid == main_node: # Assign the remaining groups to main_node for i in xrange(n_grp, len(proj_list_all)): proj_list.append(proj_list_all[i]) del proj_list_all, angle_list, mirror_list # Compute stability per projection projection direction, equal number assigned, thus overlaps elif options.grouping == "GEV": if options.delta == -1.0: ERROR("Angular step for reference projections is required for GEV method","sxproj_stability",1) from utilities import even_angles, nearestk_to_refdir, getvec refproj = even_angles(options.delta) img_begin, img_end = MPI_start_end(len(refproj), number_of_proc, myid) # Now each processor keeps its own share of reference projections refprojdir = refproj[img_begin: img_end] del refproj ref_ang = [0.0]*(len(refprojdir)*2) for i in xrange(len(refprojdir)): ref_ang[i*2] = refprojdir[0][0] ref_ang[i*2+1] = refprojdir[0][1]+i*0.1 print " A ",myid," ",time()-st proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") # the solution below is very slow, do not use it unless there is a problem with the i/O """ for i in xrange(number_of_proc): if myid == i: proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") mpi_barrier(MPI_COMM_WORLD) """ print " B ",myid," ",time()-st proj_ang = [0.0]*(nima*2) for i in xrange(nima): dp = proj_attr[i].get_params("spider") proj_ang[i*2] = dp["phi"] proj_ang[i*2+1] = dp["theta"] print " C ",myid," ",time()-st asi = Util.nearestk_to_refdir(proj_ang, ref_ang, img_per_grp) del proj_ang, ref_ang proj_list = [] for i in xrange(len(refprojdir)): proj_list.append(asi[i*img_per_grp:(i+1)*img_per_grp]) del asi print " D ",myid," ",time()-st #from sys import exit #exit() # Compute stability per projection elif options.grouping == "PPR": print " A ",myid," ",time()-st proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") print " B ",myid," ",time()-st proj_params = [] for i in xrange(nima): dp = proj_attr[i].get_params("spider") phi, theta, psi, s2x, s2y = dp["phi"], dp["theta"], dp["psi"], -dp["tx"], -dp["ty"] proj_params.append([phi, theta, psi, s2x, s2y]) img_begin, img_end = MPI_start_end(nima, number_of_proc, myid) print " C ",myid," ",time()-st from utilities import nearest_proj proj_list, mirror_list = nearest_proj(proj_params, img_per_grp, range(img_begin, img_begin+1))#range(img_begin, img_end)) refprojdir = proj_params[img_begin: img_end] del proj_params, mirror_list print " D ",myid," ",time()-st else: ERROR("Incorrect projection grouping option","sxproj_stability",1) """ from utilities import write_text_file for i in xrange(len(proj_list)): write_text_file(proj_list[i],"projlist%06d_%04d"%(i,myid)) """ ########################################################################################################### # Begin stability test from utilities import get_params_proj, read_text_file #if myid == 0: # from utilities import read_text_file # proj_list[0] = map(int, read_text_file("lggrpp0.txt")) from utilities import model_blank aveList = [model_blank(nx,ny)]*len(proj_list) if options.grouping == "GRP": refprojdir = [[0.0,0.0,-1.0]]*len(proj_list) for i in xrange(len(proj_list)): print " E ",myid," ",time()-st class_data = EMData.read_images(stack, proj_list[i]) #print " R ",myid," ",time()-st if options.CTF : from filter import filt_ctf for im in xrange(len(class_data)): # MEM LEAK!! atemp = class_data[im].copy() btemp = filt_ctf(atemp, atemp.get_attr("ctf"), binary=1) class_data[im] = btemp #class_data[im] = filt_ctf(class_data[im], class_data[im].get_attr("ctf"), binary=1) for im in class_data: try: t = im.get_attr("xform.align2d") # if they are there, no need to set them! except: try: t = im.get_attr("xform.projection") d = t.get_params("spider") set_params2D(im, [0.0,-d["tx"],-d["ty"],0,1.0]) except: set_params2D(im, [0.0, 0.0, 0.0, 0, 1.0]) #print " F ",myid," ",time()-st # Here, we perform realignment num_ali times all_ali_params = [] for j in xrange(num_ali): if( xrng[0] == 0.0 and yrng[0] == 0.0 ): avet = ali2d_ras(class_data, randomize = True, ir = 1, ou = radius, rs = 1, step = 1.0, dst = 90.0, maxit = ite, check_mirror = True, FH=options.fl, FF=options.aa) else: avet = within_group_refinement(class_data, mask, True, 1, radius, 1, xrng, yrng, step, 90.0, ite, options.fl, options.aa) ali_params = [] for im in xrange(len(class_data)): alpha, sx, sy, mirror, scale = get_params2D(class_data[im]) ali_params.extend( [alpha, sx, sy, mirror] ) all_ali_params.append(ali_params) #aveList[i] = avet #print " G ",myid," ",time()-st del ali_params # We determine the stability of this group here. # stable_set contains all particles deemed stable, it is a list of list # each list has two elements, the first is the pixel error, the second is the image number # stable_set is sorted based on pixel error #from utilities import write_text_file #write_text_file(all_ali_params, "all_ali_params%03d.txt"%myid) stable_set, mir_stab_rate, average_pix_err = multi_align_stability(all_ali_params, 0.0, 10000.0, thld_err, False, 2*radius+1) #print " H ",myid," ",time()-st if(len(stable_set) > 5): stable_set_id = [] members = [] pix_err = [] # First put the stable members into attr 'members' and 'pix_err' for s in stable_set: # s[1] - number in this subset stable_set_id.append(s[1]) # the original image number members.append(proj_list[i][s[1]]) pix_err.append(s[0]) # Then put the unstable members into attr 'members' and 'pix_err' from fundamentals import rot_shift2D avet.to_zero() if options.grouping == "GRP": aphi = 0.0 atht = 0.0 vphi = 0.0 vtht = 0.0 l = -1 for j in xrange(len(proj_list[i])): # Here it will only work if stable_set_id is sorted in the increasing number, see how l progresses if j in stable_set_id: l += 1 avet += rot_shift2D(class_data[j], stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], stable_set[l][2][3] ) if options.grouping == "GRP": phi, theta, psi, sxs, sys = get_params_proj(class_data[j]) if( theta > 90.0): phi = (phi+540.0)%360.0 theta = 180.0 - theta aphi += phi atht += theta vphi += phi*phi vtht += theta*theta else: members.append(proj_list[i][j]) pix_err.append(99999.99) aveList[i] = avet.copy() if l>1 : l += 1 aveList[i] /= l if options.grouping == "GRP": aphi /= l atht /= l vphi = (vphi - l*aphi*aphi)/l vtht = (vtht - l*atht*atht)/l from math import sqrt refprojdir[i] = [aphi, atht, (sqrt(max(vphi,0.0))+sqrt(max(vtht,0.0)))/2.0] # Here more information has to be stored, PARTICULARLY WHAT IS THE REFERENCE DIRECTION aveList[i].set_attr('members', members) aveList[i].set_attr('refprojdir',refprojdir[i]) aveList[i].set_attr('pixerr', pix_err) else: print " empty group ",i, refprojdir[i] aveList[i].set_attr('members',[-1]) aveList[i].set_attr('refprojdir',refprojdir[i]) aveList[i].set_attr('pixerr', [99999.]) del class_data if myid == main_node: km = 0 for i in xrange(number_of_proc): if i == main_node : for im in xrange(len(aveList)): aveList[im].write_image(args[1], km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD) nl = int(nl[0]) for im in xrange(nl): ave = recv_EMData(i, im+i+70000) nm = mpi_recv(1, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD) nm = int(nm[0]) members = mpi_recv(nm, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD) ave.set_attr('members', map(int, members)) members = mpi_recv(nm, MPI_FLOAT, i, MPI_TAG_UB, MPI_COMM_WORLD) ave.set_attr('pixerr', map(float, members)) members = mpi_recv(3, MPI_FLOAT, i, MPI_TAG_UB, MPI_COMM_WORLD) ave.set_attr('refprojdir', map(float, members)) ave.write_image(args[1], km) km += 1 else: mpi_send(len(aveList), 1, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) for im in xrange(len(aveList)): send_EMData(aveList[im], main_node,im+myid+70000) members = aveList[im].get_attr('members') mpi_send(len(members), 1, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) mpi_send(members, len(members), MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) members = aveList[im].get_attr('pixerr') mpi_send(members, len(members), MPI_FLOAT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) try: members = aveList[im].get_attr('refprojdir') mpi_send(members, 3, MPI_FLOAT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) except: mpi_send([-999.0,-999.0,-999.0], 3, MPI_FLOAT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) global_def.BATCH = False mpi_barrier(MPI_COMM_WORLD) from mpi import mpi_finalize mpi_finalize()
def ali3d_MPI(stack, ref_vol, outdir, maskfile=None, ir=1, ou=-1, rs=1, xr="4 2 2 1", yr="-1", ts="1 1 0.5 0.25", delta="10 6 4 4", an="-1", center=0, maxit=5, term=95, CTF=False, fourvar=False, snr=1.0, ref_a="S", sym="c1", sort=True, cutoff=999.99, pix_cutoff="0", two_tail=False, model_jump="1 1 1 1 1", restart=False, save_half=False, protos=None, oplane=None, lmask=-1, ilmask=-1, findseam=False, vertstep=None, hpars="-1", hsearch="0.0 50.0", full_output=False, compare_repro=False, compare_ref_free="-1", ref_free_cutoff="-1 -1 -1 -1", wcmask=None, debug=False, recon_pad=4, olmask=75): from alignment import Numrinit, prepare_refrings from utilities import model_circle, get_image, drop_image, get_input_from_string from utilities import bcast_list_to_all, bcast_number_to_all, reduce_EMData_to_root, bcast_EMData_to_all from utilities import send_attr_dict from utilities import get_params_proj, file_type from fundamentals import rot_avg_image import os import types from utilities import print_begin_msg, print_end_msg, print_msg from mpi import mpi_bcast, mpi_comm_size, mpi_comm_rank, MPI_FLOAT, MPI_COMM_WORLD, mpi_barrier, mpi_reduce from mpi import mpi_reduce, MPI_INT, MPI_SUM, mpi_finalize from filter import filt_ctf from projection import prep_vol, prgs from statistics import hist_list, varf3d_MPI, fsc_mask from numpy import array, bincount, array2string, ones number_of_proc = mpi_comm_size(MPI_COMM_WORLD) myid = mpi_comm_rank(MPI_COMM_WORLD) main_node = 0 if myid == main_node: if os.path.exists(outdir): ERROR( 'Output directory exists, please change the name and restart the program', "ali3d_MPI", 1) os.mkdir(outdir) mpi_barrier(MPI_COMM_WORLD) if debug: from time import sleep while not os.path.exists(outdir): print "Node ", myid, " waiting..." sleep(5) info_file = os.path.join(outdir, "progress%04d" % myid) finfo = open(info_file, 'w') else: finfo = None mjump = get_input_from_string(model_jump) xrng = get_input_from_string(xr) if yr == "-1": yrng = xrng else: yrng = get_input_from_string(yr) step = get_input_from_string(ts) delta = get_input_from_string(delta) ref_free_cutoff = get_input_from_string(ref_free_cutoff) pix_cutoff = get_input_from_string(pix_cutoff) lstp = min(len(xrng), len(yrng), len(step), len(delta)) if an == "-1": an = [-1] * lstp else: an = get_input_from_string(an) # make sure pix_cutoff is set for all iterations if len(pix_cutoff) < lstp: for i in xrange(len(pix_cutoff), lstp): pix_cutoff.append(pix_cutoff[-1]) # don't waste time on sub-pixel alignment for low-resolution ang incr for i in range(len(step)): if (delta[i] > 4 or delta[i] == -1) and step[i] < 1: step[i] = 1 first_ring = int(ir) rstep = int(rs) last_ring = int(ou) max_iter = int(maxit) center = int(center) nrefs = EMUtil.get_image_count(ref_vol) nmasks = 0 if maskfile: # read number of masks within each maskfile (mc) nmasks = EMUtil.get_image_count(maskfile) # open masks within maskfile (mc) maskF = EMData.read_images(maskfile, xrange(nmasks)) vol = EMData.read_images(ref_vol, xrange(nrefs)) nx = vol[0].get_xsize() ## make sure box sizes are the same if myid == main_node: im = EMData.read_images(stack, [0]) bx = im[0].get_xsize() if bx != nx: print_msg( "Error: Stack box size (%i) differs from initial model (%i)\n" % (bx, nx)) sys.exit() del im, bx # for helical processing: helicalrecon = False if protos is not None or hpars != "-1" or findseam is True: helicalrecon = True # if no out-of-plane param set, use 5 degrees if oplane is None: oplane = 5.0 if protos is not None: proto = get_input_from_string(protos) if len(proto) != nrefs: print_msg("Error: insufficient protofilament numbers supplied") sys.exit() if hpars != "-1": hpars = get_input_from_string(hpars) if len(hpars) != 2 * nrefs: print_msg("Error: insufficient helical parameters supplied") sys.exit() ## create helical parameter file for helical reconstruction if helicalrecon is True and myid == main_node: from hfunctions import createHpar # create initial helical parameter files dp = [0] * nrefs dphi = [0] * nrefs vdp = [0] * nrefs vdphi = [0] * nrefs for iref in xrange(nrefs): hpar = os.path.join(outdir, "hpar%02d.spi" % (iref)) params = False if hpars != "-1": # if helical parameters explicitly given, set twist & rise params = [float(hpars[iref * 2]), float(hpars[(iref * 2) + 1])] dp[iref], dphi[iref], vdp[iref], vdphi[iref] = createHpar( hpar, proto[iref], params, vertstep) # get values for helical search parameters hsearch = get_input_from_string(hsearch) if len(hsearch) != 2: print_msg("Error: specify outer and inner radii for helical search") sys.exit() if last_ring < 0 or last_ring > int(nx / 2) - 2: last_ring = int(nx / 2) - 2 if myid == main_node: # import user_functions # user_func = user_functions.factory[user_func_name] print_begin_msg("ali3d_MPI") print_msg("Input stack : %s\n" % (stack)) print_msg("Reference volume : %s\n" % (ref_vol)) print_msg("Output directory : %s\n" % (outdir)) if nmasks > 0: print_msg("Maskfile (number of masks) : %s (%i)\n" % (maskfile, nmasks)) print_msg("Inner radius : %i\n" % (first_ring)) print_msg("Outer radius : %i\n" % (last_ring)) print_msg("Ring step : %i\n" % (rstep)) print_msg("X search range : %s\n" % (xrng)) print_msg("Y search range : %s\n" % (yrng)) print_msg("Translational step : %s\n" % (step)) print_msg("Angular step : %s\n" % (delta)) print_msg("Angular search range : %s\n" % (an)) print_msg("Maximum iteration : %i\n" % (max_iter)) print_msg("Center type : %i\n" % (center)) print_msg("CTF correction : %s\n" % (CTF)) print_msg("Signal-to-Noise Ratio : %f\n" % (snr)) print_msg("Reference projection method : %s\n" % (ref_a)) print_msg("Symmetry group : %s\n" % (sym)) print_msg("Fourier padding for 3D : %i\n" % (recon_pad)) print_msg("Number of reference models : %i\n" % (nrefs)) print_msg("Sort images between models : %s\n" % (sort)) print_msg("Allow images to jump : %s\n" % (mjump)) print_msg("CC cutoff standard dev : %f\n" % (cutoff)) print_msg("Two tail cutoff : %s\n" % (two_tail)) print_msg("Termination pix error : %f\n" % (term)) print_msg("Pixel error cutoff : %s\n" % (pix_cutoff)) print_msg("Restart : %s\n" % (restart)) print_msg("Full output : %s\n" % (full_output)) print_msg("Compare reprojections : %s\n" % (compare_repro)) print_msg("Compare ref free class avgs : %s\n" % (compare_ref_free)) print_msg("Use cutoff from ref free : %s\n" % (ref_free_cutoff)) if protos: print_msg("Protofilament numbers : %s\n" % (proto)) print_msg("Using helical search range : %s\n" % hsearch) if findseam is True: print_msg("Using seam-based reconstruction\n") if hpars != "-1": print_msg("Using hpars : %s\n" % hpars) if vertstep != None: print_msg("Using vertical step : %.2f\n" % vertstep) if save_half is True: print_msg("Saving even/odd halves\n") for i in xrange(100): print_msg("*") print_msg("\n\n") if maskfile: if type(maskfile) is types.StringType: mask3D = get_image(maskfile) else: mask3D = maskfile else: mask3D = model_circle(last_ring, nx, nx, nx) numr = Numrinit(first_ring, last_ring, rstep, "F") mask2D = model_circle(last_ring, nx, nx) - model_circle(first_ring, nx, nx) fscmask = model_circle(last_ring, nx, nx, nx) if CTF: from filter import filt_ctf from reconstruction_rjh import rec3D_MPI_noCTF if myid == main_node: active = EMUtil.get_all_attributes(stack, 'active') list_of_particles = [] for im in xrange(len(active)): if active[im]: list_of_particles.append(im) del active nima = len(list_of_particles) else: nima = 0 total_nima = bcast_number_to_all(nima, source_node=main_node) if myid != main_node: list_of_particles = [-1] * total_nima list_of_particles = bcast_list_to_all(list_of_particles, source_node=main_node) image_start, image_end = MPI_start_end(total_nima, number_of_proc, myid) # create a list of images for each node list_of_particles = list_of_particles[image_start:image_end] nima = len(list_of_particles) if debug: finfo.write("image_start, image_end: %d %d\n" % (image_start, image_end)) finfo.flush() data = EMData.read_images(stack, list_of_particles) t_zero = Transform({ "type": "spider", "phi": 0, "theta": 0, "psi": 0, "tx": 0, "ty": 0 }) transmulti = [[t_zero for i in xrange(nrefs)] for j in xrange(nima)] for iref, im in ((iref, im) for iref in xrange(nrefs) for im in xrange(nima)): if nrefs == 1: transmulti[im][iref] = data[im].get_attr("xform.projection") else: # if multi models, keep track of eulers for all models try: transmulti[im][iref] = data[im].get_attr("eulers_txty.%i" % iref) except: data[im].set_attr("eulers_txty.%i" % iref, t_zero) scoremulti = [[0.0 for i in xrange(nrefs)] for j in xrange(nima)] pixelmulti = [[0.0 for i in xrange(nrefs)] for j in xrange(nima)] ref_res = [0.0 for x in xrange(nrefs)] apix = data[0].get_attr('apix_x') # for oplane parameter, create cylindrical mask if oplane is not None and myid == main_node: from hfunctions import createCylMask cmaskf = os.path.join(outdir, "mask3D_cyl.mrc") mask3D = createCylMask(data, olmask, lmask, ilmask, cmaskf) # if finding seam of helix, create wedge masks if findseam is True: wedgemask = [] for pf in xrange(nrefs): wedgemask.append(EMData()) # wedgemask option if wcmask is not None: wcmask = get_input_from_string(wcmask) if len(wcmask) != 3: print_msg( "Error: wcmask option requires 3 values: x y radius") sys.exit() # determine if particles have helix info: try: data[0].get_attr('h_angle') original_data = [] boxmask = True from hfunctions import createBoxMask except: boxmask = False # prepare particles for im in xrange(nima): data[im].set_attr('ID', list_of_particles[im]) data[im].set_attr('pix_score', int(0)) if CTF: # only phaseflip particles, not full CTF correction ctf_params = data[im].get_attr("ctf") st = Util.infomask(data[im], mask2D, False) data[im] -= st[0] data[im] = filt_ctf(data[im], ctf_params, sign=-1, binary=1) data[im].set_attr('ctf_applied', 1) # for window mask: if boxmask is True: h_angle = data[im].get_attr("h_angle") original_data.append(data[im].copy()) bmask = createBoxMask(nx, apix, ou, lmask, h_angle) data[im] *= bmask del bmask if debug: finfo.write('%d loaded \n' % nima) finfo.flush() if myid == main_node: # initialize data for the reference preparation function ref_data = [mask3D, max(center, 0), None, None, None, None] # for method -1, switch off centering in user function from time import time # this is needed for gathering of pixel errors disps = [] recvcount = [] disps_score = [] recvcount_score = [] for im in xrange(number_of_proc): if (im == main_node): disps.append(0) disps_score.append(0) else: disps.append(disps[im - 1] + recvcount[im - 1]) disps_score.append(disps_score[im - 1] + recvcount_score[im - 1]) ib, ie = MPI_start_end(total_nima, number_of_proc, im) recvcount.append(ie - ib) recvcount_score.append((ie - ib) * nrefs) pixer = [0.0] * nima cs = [0.0] * 3 total_iter = 0 volodd = EMData.read_images(ref_vol, xrange(nrefs)) voleve = EMData.read_images(ref_vol, xrange(nrefs)) if restart: # recreate initial volumes from alignments stored in header itout = "000_00" for iref in xrange(nrefs): if (nrefs == 1): modout = "" else: modout = "_model_%02d" % (iref) if (sort): group = iref for im in xrange(nima): imgroup = data[im].get_attr('group') if imgroup == iref: data[im].set_attr('xform.projection', transmulti[im][iref]) else: group = int(999) for im in xrange(nima): data[im].set_attr('xform.projection', transmulti[im][iref]) fscfile = os.path.join(outdir, "fsc_%s%s" % (itout, modout)) vol[iref], fscc, volodd[iref], voleve[iref] = rec3D_MPI_noCTF( data, sym, fscmask, fscfile, myid, main_node, index=group, npad=recon_pad) if myid == main_node: if helicalrecon: from hfunctions import processHelicalVol vstep = None if vertstep is not None: vstep = (vdp[iref], vdphi[iref]) print_msg( "Old rise and twist for model %i : %8.3f, %8.3f\n" % (iref, dp[iref], dphi[iref])) hvals = processHelicalVol(vol[iref], voleve[iref], volodd[iref], iref, outdir, itout, dp[iref], dphi[iref], apix, hsearch, findseam, vstep, wcmask) (vol[iref], voleve[iref], volodd[iref], dp[iref], dphi[iref], vdp[iref], vdphi[iref]) = hvals print_msg( "New rise and twist for model %i : %8.3f, %8.3f\n" % (iref, dp[iref], dphi[iref])) # get new FSC from symmetrized half volumes fscc = fsc_mask(volodd[iref], voleve[iref], mask3D, rstep, fscfile) else: vol[iref].write_image( os.path.join(outdir, "vol_%s.hdf" % itout), -1) if save_half is True: volodd[iref].write_image( os.path.join(outdir, "volodd_%s.hdf" % itout), -1) voleve[iref].write_image( os.path.join(outdir, "voleve_%s.hdf" % itout), -1) if nmasks > 1: # Read mask for multiplying ref_data[0] = maskF[iref] ref_data[2] = vol[iref] ref_data[3] = fscc # call user-supplied function to prepare reference image, i.e., center and filter it vol[iref], cs, fl = ref_ali3d(ref_data) vol[iref].write_image( os.path.join(outdir, "volf_%s.hdf" % (itout)), -1) if (apix == 1): res_msg = "Models filtered at spatial frequency of:\t" res = fl else: res_msg = "Models filtered at resolution of: \t" res = apix / fl ares = array2string(array(res), precision=2) print_msg("%s%s\n\n" % (res_msg, ares)) bcast_EMData_to_all(vol[iref], myid, main_node) # write out headers, under MPI writing has to be done sequentially mpi_barrier(MPI_COMM_WORLD) # projection matching for N_step in xrange(lstp): terminate = 0 Iter = -1 while (Iter < max_iter - 1 and terminate == 0): Iter += 1 total_iter += 1 itout = "%03g_%02d" % (delta[N_step], Iter) if myid == main_node: print_msg( "ITERATION #%3d, inner iteration #%3d\nDelta = %4.1f, an = %5.2f, xrange = %5.2f, yrange = %5.2f, step = %5.2f\n\n" % (N_step, Iter, delta[N_step], an[N_step], xrng[N_step], yrng[N_step], step[N_step])) for iref in xrange(nrefs): if myid == main_node: start_time = time() volft, kb = prep_vol(vol[iref]) ## constrain projections to out of plane parameter theta1 = None theta2 = None if oplane is not None: theta1 = 90 - oplane theta2 = 90 + oplane refrings = prepare_refrings(volft, kb, nx, delta[N_step], ref_a, sym, numr, MPI=True, phiEqpsi="Minus", initial_theta=theta1, delta_theta=theta2) del volft, kb if myid == main_node: print_msg( "Time to prepare projections for model %i: %s\n" % (iref, legibleTime(time() - start_time))) start_time = time() for im in xrange(nima): data[im].set_attr("xform.projection", transmulti[im][iref]) if an[N_step] == -1: t1, peak, pixer[im] = proj_ali_incore( data[im], refrings, numr, xrng[N_step], yrng[N_step], step[N_step], finfo) else: t1, peak, pixer[im] = proj_ali_incore_local( data[im], refrings, numr, xrng[N_step], yrng[N_step], step[N_step], an[N_step], finfo) #data[im].set_attr("xform.projection"%iref, t1) if nrefs > 1: data[im].set_attr("eulers_txty.%i" % iref, t1) scoremulti[im][iref] = peak from pixel_error import max_3D_pixel_error # t1 is the current param, t2 is old t2 = transmulti[im][iref] pixelmulti[im][iref] = max_3D_pixel_error(t1, t2, numr[-3]) transmulti[im][iref] = t1 if myid == main_node: print_msg("Time of alignment for model %i: %s\n" % (iref, legibleTime(time() - start_time))) start_time = time() # gather scoring data from all processors from mpi import mpi_gatherv scoremultisend = sum(scoremulti, []) pixelmultisend = sum(pixelmulti, []) tmp = mpi_gatherv(scoremultisend, len(scoremultisend), MPI_FLOAT, recvcount_score, disps_score, MPI_FLOAT, main_node, MPI_COMM_WORLD) tmp1 = mpi_gatherv(pixelmultisend, len(pixelmultisend), MPI_FLOAT, recvcount_score, disps_score, MPI_FLOAT, main_node, MPI_COMM_WORLD) tmp = mpi_bcast(tmp, (total_nima * nrefs), MPI_FLOAT, 0, MPI_COMM_WORLD) tmp1 = mpi_bcast(tmp1, (total_nima * nrefs), MPI_FLOAT, 0, MPI_COMM_WORLD) tmp = map(float, tmp) tmp1 = map(float, tmp1) score = array(tmp).reshape(-1, nrefs) pixelerror = array(tmp1).reshape(-1, nrefs) score_local = array(scoremulti) mean_score = score.mean(axis=0) std_score = score.std(axis=0) cut = mean_score - (cutoff * std_score) cut2 = mean_score + (cutoff * std_score) res_max = score_local.argmax(axis=1) minus_cc = [0.0 for x in xrange(nrefs)] minus_pix = [0.0 for x in xrange(nrefs)] minus_ref = [0.0 for x in xrange(nrefs)] #output pixel errors if (myid == main_node): from statistics import hist_list lhist = 20 pixmin = pixelerror.min(axis=1) region, histo = hist_list(pixmin, lhist) if (region[0] < 0.0): region[0] = 0.0 print_msg( "Histogram of pixel errors\n ERROR number of particles\n" ) for lhx in xrange(lhist): print_msg(" %10.3f %7d\n" % (region[lhx], histo[lhx])) # Terminate if 95% within 1 pixel error im = 0 for lhx in xrange(lhist): if (region[lhx] > 1.0): break im += histo[lhx] print_msg("Percent of particles with pixel error < 1: %f\n\n" % (im / float(total_nima) * 100)) term_cond = float(term) / 100 if (im / float(total_nima) > term_cond): terminate = 1 print_msg("Terminating internal loop\n") del region, histo terminate = mpi_bcast(terminate, 1, MPI_INT, 0, MPI_COMM_WORLD) terminate = int(terminate[0]) for im in xrange(nima): if (sort == False): data[im].set_attr('group', 999) elif (mjump[N_step] == 1): data[im].set_attr('group', int(res_max[im])) pix_run = data[im].get_attr('pix_score') if (pix_cutoff[N_step] == 1 and (terminate == 1 or Iter == max_iter - 1)): if (pixelmulti[im][int(res_max[im])] > 1): data[im].set_attr('pix_score', int(777)) if (score_local[im][int(res_max[im])] < cut[int( res_max[im])]) or (two_tail and score_local[im][int( res_max[im])] > cut2[int(res_max[im])]): data[im].set_attr('group', int(888)) minus_cc[int(res_max[im])] = minus_cc[int(res_max[im])] + 1 if (pix_run == 777): data[im].set_attr('group', int(777)) minus_pix[int( res_max[im])] = minus_pix[int(res_max[im])] + 1 if (compare_ref_free != "-1") and (ref_free_cutoff[N_step] != -1) and (total_iter > 1): id = data[im].get_attr('ID') if id in rejects: data[im].set_attr('group', int(666)) minus_ref[int( res_max[im])] = minus_ref[int(res_max[im])] + 1 minus_cc_tot = mpi_reduce(minus_cc, nrefs, MPI_FLOAT, MPI_SUM, 0, MPI_COMM_WORLD) minus_pix_tot = mpi_reduce(minus_pix, nrefs, MPI_FLOAT, MPI_SUM, 0, MPI_COMM_WORLD) minus_ref_tot = mpi_reduce(minus_ref, nrefs, MPI_FLOAT, MPI_SUM, 0, MPI_COMM_WORLD) if (myid == main_node): if (sort): tot_max = score.argmax(axis=1) res = bincount(tot_max) else: res = ones(nrefs) * total_nima print_msg("Particle distribution: \t\t%s\n" % (res * 1.0)) afcut1 = res - minus_cc_tot afcut2 = afcut1 - minus_pix_tot afcut3 = afcut2 - minus_ref_tot print_msg("Particle distribution after cc cutoff:\t\t%s\n" % (afcut1)) print_msg("Particle distribution after pix cutoff:\t\t%s\n" % (afcut2)) print_msg("Particle distribution after ref cutoff:\t\t%s\n\n" % (afcut3)) res = [0.0 for i in xrange(nrefs)] for iref in xrange(nrefs): if (center == -1): from utilities import estimate_3D_center_MPI, rotate_3D_shift dummy = EMData() cs[0], cs[1], cs[2], dummy, dummy = estimate_3D_center_MPI( data, total_nima, myid, number_of_proc, main_node) cs = mpi_bcast(cs, 3, MPI_FLOAT, main_node, MPI_COMM_WORLD) cs = [-float(cs[0]), -float(cs[1]), -float(cs[2])] rotate_3D_shift(data, cs) if (sort): group = iref for im in xrange(nima): imgroup = data[im].get_attr('group') if imgroup == iref: data[im].set_attr('xform.projection', transmulti[im][iref]) else: group = int(999) for im in xrange(nima): data[im].set_attr('xform.projection', transmulti[im][iref]) if (nrefs == 1): modout = "" else: modout = "_model_%02d" % (iref) fscfile = os.path.join(outdir, "fsc_%s%s" % (itout, modout)) vol[iref], fscc, volodd[iref], voleve[iref] = rec3D_MPI_noCTF( data, sym, fscmask, fscfile, myid, main_node, index=group, npad=recon_pad) if myid == main_node: print_msg("3D reconstruction time for model %i: %s\n" % (iref, legibleTime(time() - start_time))) start_time = time() # Compute Fourier variance if fourvar: outvar = os.path.join(outdir, "volVar_%s.hdf" % (itout)) ssnr_file = os.path.join(outdir, "ssnr_%s" % (itout)) varf = varf3d_MPI(data, ssnr_text_file=ssnr_file, mask2D=None, reference_structure=vol[iref], ou=last_ring, rw=1.0, npad=1, CTF=None, sign=1, sym=sym, myid=myid) if myid == main_node: print_msg( "Time to calculate 3D Fourier variance for model %i: %s\n" % (iref, legibleTime(time() - start_time))) start_time = time() varf = 1.0 / varf varf.write_image(outvar, -1) else: varf = None if myid == main_node: if helicalrecon: from hfunctions import processHelicalVol vstep = None if vertstep is not None: vstep = (vdp[iref], vdphi[iref]) print_msg( "Old rise and twist for model %i : %8.3f, %8.3f\n" % (iref, dp[iref], dphi[iref])) hvals = processHelicalVol(vol[iref], voleve[iref], volodd[iref], iref, outdir, itout, dp[iref], dphi[iref], apix, hsearch, findseam, vstep, wcmask) (vol[iref], voleve[iref], volodd[iref], dp[iref], dphi[iref], vdp[iref], vdphi[iref]) = hvals print_msg( "New rise and twist for model %i : %8.3f, %8.3f\n" % (iref, dp[iref], dphi[iref])) # get new FSC from symmetrized half volumes fscc = fsc_mask(volodd[iref], voleve[iref], mask3D, rstep, fscfile) print_msg( "Time to search and apply helical symmetry for model %i: %s\n\n" % (iref, legibleTime(time() - start_time))) start_time = time() else: vol[iref].write_image( os.path.join(outdir, "vol_%s.hdf" % (itout)), -1) if save_half is True: volodd[iref].write_image( os.path.join(outdir, "volodd_%s.hdf" % (itout)), -1) voleve[iref].write_image( os.path.join(outdir, "voleve_%s.hdf" % (itout)), -1) if nmasks > 1: # Read mask for multiplying ref_data[0] = maskF[iref] ref_data[2] = vol[iref] ref_data[3] = fscc ref_data[4] = varf # call user-supplied function to prepare reference image, i.e., center and filter it vol[iref], cs, fl = ref_ali3d(ref_data) vol[iref].write_image( os.path.join(outdir, "volf_%s.hdf" % (itout)), -1) if (apix == 1): res_msg = "Models filtered at spatial frequency of:\t" res[iref] = fl else: res_msg = "Models filtered at resolution of: \t" res[iref] = apix / fl del varf bcast_EMData_to_all(vol[iref], myid, main_node) if compare_ref_free != "-1": compare_repro = True if compare_repro: outfile_repro = comp_rep(refrings, data, itout, modout, vol[iref], group, nima, nx, myid, main_node, outdir) mpi_barrier(MPI_COMM_WORLD) if compare_ref_free != "-1": ref_free_output = os.path.join( outdir, "ref_free_%s%s" % (itout, modout)) rejects = compare(compare_ref_free, outfile_repro, ref_free_output, yrng[N_step], xrng[N_step], rstep, nx, apix, ref_free_cutoff[N_step], number_of_proc, myid, main_node) # retrieve alignment params from all processors par_str = ['xform.projection', 'ID', 'group'] if nrefs > 1: for iref in xrange(nrefs): par_str.append('eulers_txty.%i' % iref) if myid == main_node: from utilities import recv_attr_dict recv_attr_dict(main_node, stack, data, par_str, image_start, image_end, number_of_proc) else: send_attr_dict(main_node, data, par_str, image_start, image_end) if myid == main_node: ares = array2string(array(res), precision=2) print_msg("%s%s\n\n" % (res_msg, ares)) dummy = EMData() if full_output: nimat = EMUtil.get_image_count(stack) output_file = os.path.join(outdir, "paramout_%s" % itout) foutput = open(output_file, 'w') for im in xrange(nimat): # save the parameters for each of the models outstring = "" dummy.read_image(stack, im, True) param3d = dummy.get_attr('xform.projection') g = dummy.get_attr("group") # retrieve alignments in EMAN-format pE = param3d.get_params('eman') outstring += "%f\t%f\t%f\t%f\t%f\t%i\n" % ( pE["az"], pE["alt"], pE["phi"], pE["tx"], pE["ty"], g) foutput.write(outstring) foutput.close() del dummy mpi_barrier(MPI_COMM_WORLD) # mpi_finalize() if myid == main_node: print_end_msg("ali3d_MPI")
def main(): import os import sys from optparse import OptionParser from global_def import SPARXVERSION, ERROR import global_def arglist = [] for arg in sys.argv: arglist.append( arg ) progname = os.path.basename(arglist[0]) usage = progname + " stack ref_vol outdir <maskfile> --ir=inner_radius --ou=outer_radius --rs=ring_step --xr=x_range --ynumber=y_numbers --txs=translational_search_stepx --delta=angular_step --an=angular_neighborhood --maxit=max_iter --CTF --snr=1.0 --sym=c1 --datasym=symdoc" parser = OptionParser(usage,version=SPARXVERSION) #parser.add_option("--ir", type="float", default= -1, help="Inner radius for psi angle search > 0 (set to 1) (Angstroms)") parser.add_option("--ou", type="float", default= -1, help="Outer radius for psi angle search < int(nx*pixel_size/2)-1 (Angstroms)") parser.add_option("--rs", type="int", default= 1, help="Step between rings in rotational correlation >0 (set to 1)" ) parser.add_option("--xr", type="string", default= " 4 2 1 1 1", help="Range for translation search in x direction, search within +/-xr (Angstroms) ") parser.add_option("--txs", type="string", default= "1 1 1 0.5 0.25", help="Step size of the translation search in x directions, search is -xr, -xr+ts, 0, xr-ts, xr (Angstroms)") parser.add_option("--y_restrict", type="string", default= "-1 -1 -1 -1 -1", help="Range for translational search in y-direction, search is +/-y_restrict in Angstroms. This only applies to local search, i.e., when an is not -1. If y_restrict < 0, then the y search range is set such that it is the same ratio to dp as angular search range is to dphi. For regular ihrsr, y search range is the full range when y_restrict< 0. Default is -1.") parser.add_option("--ynumber", type="string", default= "4 8 16 32 32", help="Even number of the steps for the search in y direction, search is (-dpp/2,-dpp/2+dpp/ny,,..,0,..,dpp/2-dpp/ny dpp/2]") parser.add_option("--delta", type="string", default= "10 6 4 3 2", help="Angular step of reference projections") parser.add_option("--an", type="string", default= "-1", help="Angular neighborhood for local searches") parser.add_option("--maxit", type="int", default= 30, help="Maximum number of iterations performed for each angular step (set to 30) ") parser.add_option("--searchit", type="int", default= 1, help="Number of iterations to predict/search before doing reconstruction and updating of reference volume. Default is 1. If maxit=3 and searchit=2, then for each of the 3 inner iterations, 2 iterations of prediction/search will be performed before generating reconstruction.") parser.add_option("--CTF", action="store_true", default=False, help="CTF correction") parser.add_option("--snr", type="float", default= 1.0, help="Signal-to-Noise Ratio of the data") #parser.add_option("--MPI", action="store_true", default=False, help="use MPI version") #parser.add_option("--fourvar", action="store_true", default=False, help="compute Fourier variance") parser.add_option("--apix", type="float", default= -1.0, help="Pixel size in Angstroms") parser.add_option("--dp", type="float", default= -1.0, help="Helical symmetry axial rise (Angstroms)") parser.add_option("--dphi", type="float", default= -1.0, help="Helical symmetry azimuthal angle") #parser.add_option("--MA", action="store_true", default=False, help="predict consistent parameters based on moving average") parser.add_option("--psi_max", type="float", default= 10.0, help="Maximum psi - how far rotation in plane can can deviate from 90 or 270 degrees") parser.add_option("--rmin", type="float", default= 0.0, help="Min radius for application of helical symmetry (Angstroms)") parser.add_option("--rmax", type="float", default= 80.0, help="Max radius for application of helical symmetry (Angstroms)") parser.add_option("--fract", type="float", default= 0.7, help="Fraction of volume used for application of helical symmetry") parser.add_option("--sym", type="string", default= "c1", help="Point-group symmetry of the filament") parser.add_option("--function", type="string", default="helical", help="Name of the reference preparation function (Default: helical)") parser.add_option("--npad", type="int", default= 2, help="Padding size for 3D reconstruction (default=2)") parser.add_option("--debug", action="store_true", default=False, help="debug") parser.add_option("--initial_theta", type="float", default=90.0, help="Intial theta for out-of-plane tilt search, the range will be (initial theta to 90.0 in steps of delta) (default = 90, no out-of-plane tilt)") parser.add_option("--delta_theta", type="float", default=1.0, help="Delta theta for out-of-plane tilt search (default = 1)") #parser.add_option("--boundaryavg", action="store_true", default=False, help="boundaryavg") #parser.add_option("--MA_WRAP", type="int", default= 0, help="do wrapping in MA if MA_WRAP=1, else no wrapping in MA. Default is 0.") parser.add_option("--seg_ny", type="int", default= 256, help="y dimension of desired segment size, should be related to fract in that fract ~ seg_ny/ny, where ny is dimension of input projections. (pixels)") parser.add_option("--new", action="store_true", default=False, help="use new version") parser.add_option("--snake", action="store_true", default=False, help="use snake method") parser.add_option("--snakeknots", type="int", default= -1, help="maximal number of knots for each filament snake. If take default value -1, it will take nseg//2+1, where nseg is the number of segments in the filament") (options, args) = parser.parse_args(arglist[1:]) if len(args) < 3 or len(args) > 4: print "usage: " + usage + "\n" print "Please run '" + progname + " -h' for detailed options" else: global_def.BATCH = True # Convert input arguments in the units/format as expected by ihrsr_MPI in applications. if options.apix < 0: ERROR("Please specify pixel size apix","sxheliconlocal",1) if options.dp < 0 or options.dphi < 0: ERROR("Please specify helical symmetry parameters dp and dphi","sxheliconlocal",1) if options.an <= 0 : ERROR("Angular search range (an) has to be given. Only local searches are permitted.","sxheliconlocal",1) print " This code is under development, some instabilities are possible 12/28/2014" rminp = int((float(options.rmin)/options.apix) + 0.5) rmaxp = int((float(options.rmax)/options.apix) + 0.5) from utilities import get_input_from_string, get_im xr = get_input_from_string(options.xr) txs = get_input_from_string(options.txs) y_restrict = get_input_from_string(options.y_restrict) irp = 1 if options.ou < 0: oup = -1 else: oup = int( (options.ou/options.apix) + 0.5) xrp = "" txsp = "" y_restrict2 = "" for i in xrange(len(xr)): xrp += str(float(xr[i])/options.apix)+" " xrp = xrp[:-1] for i in xrange(len(txs)): txsp += str(float(txs[i])/options.apix)+" " txsp = txsp[:-1] # now y_restrict has the same format as x search range .... has to change ihrsr accordingly for i in xrange(len(y_restrict)): y_restrict2 += str(float(y_restrict[i])/options.apix)+" " y_restrict2 = y_restrict2[:-1] from mpi import mpi_init, mpi_finalize sys.argv = mpi_init(len(sys.argv), sys.argv) if global_def.CACHE_DISABLE: from utilities import disable_bdb_cache disable_bdb_cache() from applications import localhelicon_MPI, localhelicon_MPInew, localhelicon_MPIming if len(args) < 4: mask = None else: mask = args[3] if options.new: localhelicon_MPInew(args[0], args[1], args[2], options.seg_ny, mask, irp, oup, options.rs, xrp, options.ynumber, \ txsp, options.delta, options.initial_theta, options.delta_theta, options.an, options.maxit, options.CTF, options.snr, \ options.dp, options.dphi, options.psi_max, \ rminp, rmaxp, options.fract, options.npad,options.sym, options.function,\ options.apix, options.debug, y_restrict2, options.searchit) elif options.snake: localhelicon_MPIming(args[0], args[1], args[2], options.seg_ny, mask, irp, oup, options.rs, xrp, options.ynumber, \ txsp, options.delta, options.initial_theta, options.delta_theta, options.an, options.maxit, options.CTF, options.snr, \ options.dp, options.dphi, options.psi_max, \ rminp, rmaxp, options.fract, options.npad,options.sym, options.function,\ options.apix, options.debug, y_restrict2, options.searchit, options.snakeknots) else: localhelicon_MPI(args[0], args[1], args[2], options.seg_ny, mask, irp, oup, options.rs, xrp, options.ynumber, \ txsp, options.delta, options.initial_theta, options.delta_theta, options.an, options.maxit, options.CTF, options.snr, \ options.dp, options.dphi, options.psi_max, \ rminp, rmaxp, options.fract, options.npad,options.sym, options.function,\ options.apix, options.debug, y_restrict2, options.searchit) global_def.BATCH = False from mpi import mpi_finalize mpi_finalize()
def main(): import os import sys from optparse import OptionParser from global_def import SPARXVERSION import global_def arglist = [] for arg in sys.argv: arglist.append( arg ) progname = os.path.basename(arglist[0]) usage2 = progname + """ inputfile outputfile [options] Functionalities: 1. Helicise input volume and save the result to output volume: sxhelicon_utils.py input_vol.hdf output_vol.hdf --helicise --dp=27.6 --dphi=166.5 --fract=0.65 --rmax=70 --rmin=1 --apix=1.84 --sym=D1 2. Helicise pdb file and save the result to a new pdb file: sxhelicon_utils.py input.pdb output.pdb --helicisepdb --dp=27.6 --dphi=166.5 --nrepeats --apix=1.84 3. Generate two lists of image indices used to split segment stack into halves for helical fsc calculation. sxhelicon_utils.py bdb:big_stack --hfsc='flst' --filament_attr=filament 4. Map of filament distribution in the stack sxhelicon_utils.py bdb:big_stack --filinfo=info.txt The output file will contain four columns: 1 2 3 4 first image number last image number number of images in the filament name 5. Predict segments' orientation parameters based on distances between segments and known helical symmetry sxhelicon_utils.py bdb:big_stack --predict_helical=helical_params.txt --dp=27.6 --dphi=166.5 --apix=1.84 6. Generate disks from filament based reconstructions: sxheader.py stk.hdf --params=xform.projection --import=params.txt # horatio active_refactoring Jy51i1EwmLD4tWZ9_00000_1 # sxheader.py stk.hdf --params=active --one mpirun -np 2 sxhelicon_utils.py stk.hdf --gendisk='bdb:disk' --ref_nx=100 --ref_ny=100 --ref_nz=200 --apix=1.84 --dp=27.6 --dphi=166.715 --fract=0.67 --rmin=0 --rmax=64 --function="[.,nofunc,helical3c]" --sym="c1" --MPI 7. Stack disks based on helical symmetry parameters sxhelicon_utils.py disk_to_stack.hdf --stackdisk=stacked_disks.hdf --dphi=166.5 --dp=27.6 --ref_nx=160 --ref_ny=160 --ref_nz=225 --apix=1.84 8. Helical symmetry search: mpirun -np 3 sxhelicon_utils.py volf0010.hdf outsymsearch --symsearch --dp=27.6 --dphi=166.715 --apix=1.84 --fract=0.65 --rmin=0 --rmax=92.0 --datasym=datasym.txt --dp_step=0.92 --ndp=3 --dphi_step=1.0 --ndphi=10 --MPI """ parser = OptionParser(usage2,version=SPARXVERSION) #parser.add_option("--ir", type="float", default= -1, help="inner radius for rotational correlation > 0 (set to 1) (Angstroms)") parser.add_option("--ou", type="float", default= -1, help="outer radius for rotational 2D correlation < int(nx/2)-1 (set to the radius of the particle) (Angstroms)") parser.add_option("--rs", type="int", default= 1, help="step between rings in rotational correlation >0 (set to 1)" ) parser.add_option("--xr", type="string", default= "4 2 1 1 1", help="range for translation search in x direction, search is +/-xr (Angstroms) ") parser.add_option("--txs", type="string", default= "1 1 1 0.5 0.25", help="step size of the translation search in x directions, search is -xr, -xr+ts, 0, xr-ts, xr (Angstroms)") parser.add_option("--delta", type="string", default= "10 6 4 3 2", help="angular step of reference projections") parser.add_option("--an", type="string", default= "-1", help="angular neighborhood for local searches") parser.add_option("--maxit", type="int", default= 30, help="maximum number of iterations performed for each angular step (set to 30) ") parser.add_option("--CTF", action="store_true", default=False, help="CTF correction") parser.add_option("--snr", type="float", default= 1.0, help="Signal-to-Noise Ratio of the data") parser.add_option("--MPI", action="store_true", default=False, help="use MPI version") #parser.add_option("--fourvar", action="store_true", default=False, help="compute Fourier variance") parser.add_option("--apix", type="float", default= -1.0, help="pixel size in Angstroms") parser.add_option("--dp", type="float", default= -1.0, help="delta z - translation in Angstroms") parser.add_option("--dphi", type="float", default= -1.0, help="delta phi - rotation in degrees") parser.add_option("--rmin", type="float", default= 0.0, help="minimal radius for hsearch (Angstroms)") parser.add_option("--rmax", type="float", default= 80.0, help="maximal radius for hsearch (Angstroms)") parser.add_option("--fract", type="float", default= 0.7, help="fraction of the volume used for helical search") parser.add_option("--sym", type="string", default= "c1", help="symmetry of the structure") parser.add_option("--function", type="string", default="helical", help="name of the reference preparation function") parser.add_option("--npad", type="int", default= 2, help="padding size for 3D reconstruction") parser.add_option("--debug", action="store_true", default=False, help="debug") parser.add_option("--volalixshift", action="store_true", default=False, help="Use volalixshift refinement") parser.add_option("--searchxshift", type="float", default= 0.0, help="search range for x-shift determination: +/- searchxshift (Angstroms)") parser.add_option("--nearby", type="float", default= 6.0, help="neighborhood within which to search for peaks in 1D ccf for x-shift search (Angstroms)") # filinfo parser.add_option( "--filinfo", type="string", default="", help="Store in an output text file infomration about distribution of filaments in the stack." ) # diskali parser.add_option("--diskali", action="store_true", default=False, help="volume alignment") parser.add_option("--zstep", type="float", default= 1, help="Step size for translational search along z (Angstroms)") # helicise parser.add_option("--helicise", action="store_true", default=False, help="helicise input volume and save results to output volume") parser.add_option("--hfsc", type="string", default="", help="Generate two lists of image indices used to split segment stack into halves for helical fsc calculation. The lists will be stored in two text files named using file_prefix with '_even' and '_odd' suffixes, respectively." ) parser.add_option("--filament_attr", type="string", default="filament", help="attribute under which filament identification is stored" ) parser.add_option("--predict_helical", type="string", default="", help="Generate projection parameters consistent with helical symmetry") # helicise pdb parser.add_option("--helicisepdb", action="store_true", default=False, help="Helicise pdb file and save the result to a new pdb file") parser.add_option("--nrepeats", type="int", default= 50, help="Number of time the helical symmetry will be applied to the input file") # input options for generating disks parser.add_option("--gendisk", type="string", default="", help="Name of file under which generated disks will be saved to") parser.add_option("--ref_nx", type="int", default= -1, help="nx=ny volume size" ) parser.add_option("--ref_nz", type="int", default= -1, help="nz volume size - computed disks will be nx x ny x rise/apix" ) parser.add_option("--new_pixel_size", type="float", default= -1, help="desired pixel size of the output disks. The default is -1, in which case there is no resampling (unless --match_pixel_rise flag is True).") parser.add_option("--maxerror", type="float", default= 0.1, help="proportional to the maximum amount of error to tolerate between (dp/new_pixel_size) and int(dp/new_pixel_size ), where new_pixel_size is the pixel size calculated when the option --match_pixel_rise flag is True.") parser.add_option("--match_pixel_rise", action="store_true", default=False, help="calculate new pixel size such that the rise is approximately integer number of pixels given the new pixel size. This will be the pixel size of the output disks.") # get consistency parser.add_option("--consistency", type="string", default="", help="Name of parameters to get consistency statistics for") parser.add_option("--phithr", type="float", default= 2.0, help="phi threshold for consistency check") parser.add_option("--ythr", type="float", default= 2.0, help="y threshold (in Angstroms) for consistency check") parser.add_option("--segthr", type="int", default= 3, help="minimum number of segments/filament for consistency check") # stack disks parser.add_option("--stackdisk", type="string", default="", help="Name of file under which output volume will be saved to.") parser.add_option("--ref_ny", type="int", default=-1, help="ny of output volume size. Default is ref_nx" ) # symmetry search parser.add_option("--symsearch", action="store_true", default=False, help="Do helical symmetry search." ) parser.add_option("--ndp", type="int", default= 12, help="In symmetrization search, number of delta z steps equals to 2*ndp+1") parser.add_option("--ndphi", type="int", default= 12, help="In symmetrization search, number of dphi steps equals to 2*ndphi+1") parser.add_option("--dp_step", type="float", default= 0.1, help="delta z step for symmetrization [Angstroms] (default 0.1)") parser.add_option("--dphi_step", type="float", default= 0.1, help="dphi step for symmetrization [degrees] (default 0.1)") parser.add_option("--datasym", type="string", default="datasym.txt", help="symdoc") parser.add_option("--symdoc", type="string", default="", help="text file containing helical symmetry parameters dp and dphi") # filament statistics in the stack (options, args) = parser.parse_args(arglist[1:]) if len(args) < 1 or len(args) > 5: print "Various helical reconstruction related functionalities: " + usage2 print "Please run '" + progname + " -h' for detailed options" else: if len(options.hfsc) > 0: if len(args) != 1: print "Incorrect number of parameters" sys.exit() from applications import imgstat_hfsc imgstat_hfsc( args[0], options.hfsc, options.filament_attr) sys.exit() elif len(options.filinfo) > 0: if len(args) != 1: print "Incorrect number of parameters" sys.exit() from EMAN2 import EMUtil filams = EMUtil.get_all_attributes(args[0], "filament") ibeg = 0 filcur = filams[0] n = len(filams) inf = [] i = 1 while( i <= n): if(i < n): fis = filams[i] else: fis = "" if( fis != filcur ): iend = i-1 inf.append([ibeg,iend,iend-ibeg+1,filcur]) ibeg = i filcur = fis i += 1 from utilities import write_text_row write_text_row(inf, options.filinfo) sys.exit() if len(options.stackdisk) > 0: if len(args) != 1: print "Incorrect number of parameters" sys.exit() dpp = (float(options.dp)/options.apix) rise = int(dpp) if(abs(float(rise) - dpp)>1.0e-3): print " dpp has to be integer multiplicity of the pixel size" sys.exit() from utilities import get_im v = get_im(args[0]) from applications import stack_disks ref_ny = options.ref_ny if ref_ny < 0: ref_ny = options.ref_nx sv = stack_disks(v, options.ref_nx, ref_ny, options.ref_nz, options.dphi, rise) sv.write_image(options.stackdisk) sys.exit() if len(options.consistency) > 0: if len(args) != 1: print "Incorrect number of parameters" sys.exit() from development import consistency_params consistency_params(args[0], options.consistency, options.dphi, options.dp, options.apix,phithr=options.phithr, ythr=options.ythr, THR=options.segthr) sys.exit() rminp = int((float(options.rmin)/options.apix) + 0.5) rmaxp = int((float(options.rmax)/options.apix) + 0.5) from utilities import get_input_from_string, get_im xr = get_input_from_string(options.xr) txs = get_input_from_string(options.txs) irp = 1 if options.ou < 0: oup = -1 else: oup = int( (options.ou/options.apix) + 0.5) xrp = '' txsp = '' for i in xrange(len(xr)): xrp += " "+str(float(xr[i])/options.apix) for i in xrange(len(txs)): txsp += " "+str(float(txs[i])/options.apix) searchxshiftp = int( (options.searchxshift/options.apix) + 0.5) nearbyp = int( (options.nearby/options.apix) + 0.5) zstepp = int( (options.zstep/options.apix) + 0.5) if options.MPI: from mpi import mpi_init, mpi_finalize sys.argv = mpi_init(len(sys.argv), sys.argv) if len(options.predict_helical) > 0: if len(args) != 1: print "Incorrect number of parameters" sys.exit() if options.dp < 0: print "Helical symmetry paramter rise --dp should not be negative" sys.exit() from applications import predict_helical_params predict_helical_params(args[0], options.dp, options.dphi, options.apix, options.predict_helical) sys.exit() if options.helicise: if len(args) != 2: print "Incorrect number of parameters" sys.exit() if options.dp < 0: print "Helical symmetry paramter rise --dp should not be negative" sys.exit() from utilities import get_im, sym_vol vol = get_im(args[0]) vol = sym_vol(vol, options.sym) hvol = vol.helicise(options.apix, options.dp, options.dphi, options.fract, rmaxp, rminp) hvol = sym_vol(hvol, options.sym) hvol.write_image(args[1]) sys.exit() if options.helicisepdb: if len(args) != 2: print "Incorrect number of parameters" sys.exit() if options.dp < 0: print "Helical symmetry paramter rise --dp should not be negative" sys.exit() from math import cos, sin, radians from copy import deepcopy import numpy from numpy import zeros,dot,float32 dp = options.dp dphi = options.dphi nperiod = options.nrepeats infile =open(args[0],"r") pall = infile.readlines() infile.close() p = [] pos = [] lkl = -1 for i in xrange( len(pall) ): if( (pall[i])[:4] == 'ATOM'): if( lkl == -1 ): lkl = i p.append( pall[i] ) pos.append(i) n = len(p) X = zeros( (3,len(p) ), dtype=float32 ) X_new = zeros( (3,len(p) ), dtype=float32 ) for i in xrange( len(p) ): element = deepcopy( p[i] ) X[0,i]=float(element[30:38]) X[1,i]=float(element[38:46]) X[2,i]=float(element[46:54]) pnew = [] for j in xrange(-nperiod, nperiod+1): for i in xrange( n ): pnew.append( deepcopy(p[i]) ) dphi = radians(dphi) m = zeros( (3,3 ), dtype=float32 ) t = zeros( (3,1 ), dtype=float32 ) m[2][2] = 1.0 t[0,0] = 0.0 t[1,0] = 0.0 for j in xrange(-nperiod, nperiod+1): if j != 0: rd = j*dphi m[0][0] = cos(rd) m[0][1] = sin(rd) m[1][0] = -m[0][1] m[1][1] = m[0][0] t[2,0] = j*dp X_new = dot(m, X) + t for i in xrange( n ): pnew[j*n+i] = pnew[j*n+i][:30] + "%8.3f"%( float(X_new[0,i]) )+"%8.3f"%( float(X_new[1,i]) )+"%8.3f"%( float(X_new[2,i]) ) + pnew[j*n+i][54:] outfile=open(args[1],"w") outfile.writelines(pall[0:lkl]) outfile.writelines(pnew) outfile.writelines("END\n") outfile.close() sys.exit() if options.volalixshift: if options.maxit > 1: print "Inner iteration for x-shift determinatin is restricted to 1" sys.exit() if len(args) < 4: mask = None else: mask = args[3] from applications import volalixshift_MPI global_def.BATCH = True volalixshift_MPI(args[0], args[1], args[2], searchxshiftp, options.apix, options.dp, options.dphi, options.fract, rmaxp, rminp, mask, options.maxit, options.CTF, options.snr, options.sym, options.function, options.npad, options.debug, nearbyp) global_def.BATCH = False if options.diskali: #if options.maxit > 1: # print "Inner iteration for disk alignment is restricted to 1" # sys.exit() if len(args) < 4: mask = None else: mask = args[3] global_def.BATCH = True if(options.sym[:1] == "d" or options.sym[:1] == "D" ): from development import diskaliD_MPI diskaliD_MPI(args[0], args[1], args[2], mask, options.dp, options.dphi, options.apix, options.function, zstepp, options.fract, rmaxp, rminp, options.CTF, options.maxit, options.sym) else: from applications import diskali_MPI diskali_MPI(args[0], args[1], args[2], mask, options.dp, options.dphi, options.apix, options.function, zstepp, options.fract, rmaxp, rminp, options.CTF, options.maxit, options.sym) global_def.BATCH = False if options.symsearch: if len(options.symdoc) < 1: if options.dp < 0 or options.dphi < 0: print "Enter helical symmetry parameters either using --symdoc or --dp and --dphi" sys.exit() if options.dp < 0 or options.dphi < 0: # read helical symmetry parameters from symdoc from utilities import read_text_row hparams=read_text_row(options.symdoc) dp = hparams[0][0] dphi = hparams[0][1] else: dp = options.dp dphi = options.dphi from applications import symsearch_MPI if len(args) < 3: mask = None else: mask= args[2] global_def.BATCH = True symsearch_MPI(args[0], args[1], mask, dp, options.ndp, options.dp_step, dphi, options.ndphi, options.dphi_step, rminp, rmaxp, options.fract, options.sym, options.function, options.datasym, options.apix, options.debug) global_def.BATCH = False elif len(options.gendisk)> 0: from applications import gendisks_MPI global_def.BATCH = True if len(args) == 1: mask3d = None else: mask3d = args[1] if options.dp < 0: print "Helical symmetry paramter rise --dp must be explictly set!" sys.exit() gendisks_MPI(args[0], mask3d, options.ref_nx, options.apix, options.dp, options.dphi, options.fract, rmaxp, rminp, options.CTF, options.function, options.sym, options.gendisk, options.maxerror, options.new_pixel_size, options.match_pixel_rise) global_def.BATCH = False if options.MPI: from mpi import mpi_finalize mpi_finalize()
def main(): from utilities import get_input_from_string progname = os.path.basename(sys.argv[0]) usage = ( progname + " stack output_average --radius=particle_radius --xr=xr --yr=yr --ts=ts --thld_err=thld_err --num_ali=num_ali --fl=fl --aa=aa --CTF --verbose --stables" ) parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--radius", type="int", default=-1, help=" particle radius for alignment") parser.add_option( "--xr", type="string", default="2 1", help="range for translation search in x direction, search is +/xr (default 2,1)", ) parser.add_option( "--yr", type="string", default="-1", help="range for translation search in y direction, search is +/yr (default = same as xr)", ) parser.add_option( "--ts", type="string", default="1 0.5", help="step size of the translation search in both directions, search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional (default: 1,0.5)", ) parser.add_option("--thld_err", type="float", default=0.75, help="threshld of pixel error (default = 0.75)") parser.add_option( "--num_ali", type="int", default=5, help="number of alignments performed for stability (default = 5)" ) parser.add_option("--maxit", type="int", default=30, help="number of iterations for each xr (default = 30)") parser.add_option( "--fl", type="float", default=0.3, help="cut-off frequency of hyperbolic tangent low-pass Fourier filter (default = 0.3)", ) parser.add_option( "--aa", type="float", default=0.2, help="fall-off of hyperbolic tangent low-pass Fourier filter (default = 0.2)" ) parser.add_option("--CTF", action="store_true", default=False, help="Use CTF correction during the alignment ") parser.add_option( "--verbose", action="store_true", default=False, help="print individual pixel error (default = False)" ) parser.add_option( "--stables", action="store_true", default=False, help="output the stable particles number in file (default = False)", ) parser.add_option( "--method", type="string", default=" ", help="SHC (standard method is default when flag is ommitted)" ) (options, args) = parser.parse_args() if len(args) != 1 and len(args) != 2: print "usage: " + usage print "Please run '" + progname + " -h' for detailed options" else: if global_def.CACHE_DISABLE: from utilities import disable_bdb_cache disable_bdb_cache() from applications import within_group_refinement, ali2d_ras from pixel_error import multi_align_stability from utilities import write_text_file, write_text_row global_def.BATCH = True xrng = get_input_from_string(options.xr) if options.yr == "-1": yrng = xrng else: yrng = get_input_from_string(options.yr) step = get_input_from_string(options.ts) class_data = EMData.read_images(args[0]) nx = class_data[0].get_xsize() ou = options.radius num_ali = options.num_ali if ou == -1: ou = nx / 2 - 2 from utilities import model_circle, get_params2D, set_params2D mask = model_circle(ou, nx, nx) if options.CTF: from filter import filt_ctf for im in xrange(len(class_data)): # Flip phases class_data[im] = filt_ctf(class_data[im], class_data[im].get_attr("ctf"), binary=1) for im in class_data: im.set_attr("previousmax", -1.0e10) try: t = im.get_attr("xform.align2d") # if they are there, no need to set them! except: try: t = im.get_attr("xform.projection") d = t.get_params("spider") set_params2D(im, [0.0, -d["tx"], -d["ty"], 0, 1.0]) except: set_params2D(im, [0.0, 0.0, 0.0, 0, 1.0]) all_ali_params = [] for ii in xrange(num_ali): ali_params = [] if options.verbose: ALPHA = [] SX = [] SY = [] MIRROR = [] if xrng[0] == 0.0 and yrng[0] == 0.0: avet = ali2d_ras( class_data, randomize=True, ir=1, ou=ou, rs=1, step=1.0, dst=90.0, maxit=options.maxit, check_mirror=True, FH=options.fl, FF=options.aa, ) else: avet = within_group_refinement( class_data, mask, True, 1, ou, 1, xrng, yrng, step, 90.0, maxit=options.maxit, FH=options.fl, FF=options.aa, method=options.method, ) from utilities import info # print " avet ",info(avet) for im in class_data: alpha, sx, sy, mirror, scale = get_params2D(im) ali_params.extend([alpha, sx, sy, mirror]) if options.verbose: ALPHA.append(alpha) SX.append(sx) SY.append(sy) MIRROR.append(mirror) all_ali_params.append(ali_params) if options.verbose: write_text_file([ALPHA, SX, SY, MIRROR], "ali_params_run_%d" % ii) """ avet = class_data[0] from utilities import read_text_file all_ali_params = [] for ii in xrange(5): temp = read_text_file( "ali_params_run_%d"%ii,-1) uuu = [] for k in xrange(len(temp[0])): uuu.extend([temp[0][k],temp[1][k],temp[2][k],temp[3][k]]) all_ali_params.append(uuu) """ stable_set, mir_stab_rate, pix_err = multi_align_stability( all_ali_params, 0.0, 10000.0, options.thld_err, options.verbose, 2 * ou + 1 ) print "%4s %20s %20s %20s %30s %6.2f" % ( "", "Size of set", "Size of stable set", "Mirror stab rate", "Pixel error prior to pruning the set above threshold of", options.thld_err, ) print "Average stat: %10d %20d %20.2f %15.2f" % (len(class_data), len(stable_set), mir_stab_rate, pix_err) if len(stable_set) > 0: if options.stables: stab_mem = [[0, 0.0, 0] for j in xrange(len(stable_set))] for j in xrange(len(stable_set)): stab_mem[j] = [int(stable_set[j][1]), stable_set[j][0], j] write_text_row(stab_mem, "stable_particles.txt") stable_set_id = [] particle_pixerr = [] for s in stable_set: stable_set_id.append(s[1]) particle_pixerr.append(s[0]) from fundamentals import rot_shift2D avet.to_zero() l = -1 print "average parameters: angle, x-shift, y-shift, mirror" for j in stable_set_id: l += 1 print " %4d %4d %12.2f %12.2f %12.2f %1d" % ( l, j, stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], int(stable_set[l][2][3]), ) avet += rot_shift2D( class_data[j], stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], stable_set[l][2][3] ) avet /= l + 1 avet.set_attr("members", stable_set_id) avet.set_attr("pix_err", pix_err) avet.set_attr("pixerr", particle_pixerr) avet.write_image(args[1]) global_def.BATCH = False