def main(mapset,map_name,remove,msk_type): set_mapset(mapset) if remove: drop_mask(msk_type) else: set_mask(name,msk_type)
def make_output_mask(mapcalc_str,border_vec): gscript.run_command('v.to.rast',input=border_vec, output='{}_rast'.format(border_vec), use='val', value=1, overwrite=True) gscript.mapcalc('output_mask = {}_rast && ({})'.format(border_vec,mapcalc_str), overwrite=True, verbose=True) set_mask('output_mask',maskcats=1)
def start(self): """Initialize a new word to start playing.""" if not self.suspended: return new_word = utilities.get_new_word(self.lexicon) if new_word == "": raise ValueError("no word found!") self.__word = new_word self.__valid_chars = utilities.decompose(new_word) self.mask, symbols = utilities.set_mask(new_word) self.symbols.extend(symbols) self.suspended = False
def main(out,mapy,mapx,ms,residname,estimatesname,seed): mapx = parse_feature_names(mapx) gscript.run_command('g.mapset',mapset=ms) # run regression run_regression(out,mapy,mapx,residname,estimatesname) # develop mask from residuals map set_mask(residname) # calculate sum of squares of residuals and number of observations (will be dividing by too many degrees # of freedom, but N is so big that the variance of the residuals is a reasonable approximation of the unbiased estimator of # the variance of the dependent variable. stats = get_stats(residname) sigma_hat2 = float(stats['variance']) # calculate standard error for each parameter estimate in the regression and output to file se_list = get_param_se(mapx,sigma_hat2) add_output_lines(out,mapx,se_list) # drop the mask from this mapset drop_mask()