def create_ud_cont_2cls(stock, meta):
    def check_cont_status(stock_ud, index):

        count = [0, 0]
        for i in range(index - 1, -1, -1):

            if stock_ud[i] == stock_ud[index] == 0: count[0] += 1
            elif stock_ud[i] == stock_ud[index] == 1 or stock_ud[
                    i] == stock_ud[index] == 2:
                count[1] += 1
            else:
                break

        return count

    fe = f_extr.feature_extractor(meta, stock)
    f_ud, _ = getattr(fe, 'ud')()
    f_ud = np.argmax(f_ud, axis=1)

    stock_ud = []
    for i in range(len(stock)):
        stock_ud.append(check_cont_status(f_ud, i))

    stock_ud = np.vstack(stock_ud)
    stock = np.concatenate((stock_ud, stock), axis=1)

    meta_up = ['contdown', 'contup']
    meta_ud = meta_up + meta

    return stock, meta_ud
def create_ud_info(stock, meta, backDay=1):

    fe = f_extr.feature_extractor(meta, stock)
    f_ud, _ = getattr(fe, 'ud')()
    stock_ud = np.zeros((len(stock), backDay * 3))

    f_ud = np.argmax(f_ud, axis=1)

    for i in range(backDay, len(stock)):
        for j in range(backDay):
            if f_ud[i] == f_ud[i - j - 1] == 0:
                stock_ud[i][j * 3] = 1

            elif f_ud[i] == f_ud[i - j - 1] == 1:
                stock_ud[i][j * 3 + 1] = 1

            elif f_ud[i] == f_ud[i - j - 1] == 2:
                stock_ud[i][j * 3 + 2] = 1

    stock_ud = stock_ud[backDay:]
    stock = stock[backDay:]
    stock = np.concatenate((stock_ud, stock), axis=1)

    meta_temp = ['downLag_', 'fairLag_', 'upLag_']
    meta_label = [
        meta_l + str(bd) for bd in range(backDay) for meta_l in meta_temp
    ]
    meta_ud = meta_label + meta

    return stock, meta_ud
Esempio n. 3
0
def get_data_from_dow_friday(raw,
                             stocks,
                             meta,
                             predict_day,
                             feature_list=['ratio'],
                             isShift=True):

    stocks = clean_stock(stocks, meta, feature_list)

    df = pd.DataFrame({'date': raw.columns})
    df['date'] = pd.to_datetime(df['date'])
    df['dow'] = df['date'].dt.dayofweek
    dow_array = np.array(df['dow'][-len(stocks):])
    #print('*****************************')
    #print(np.array(df['date'][-len(stocks):])[-1])
    dow_array_mask_mon = np.equal(dow_array, 4)

    def get_mask(dow_array_mask_mon):
        for i in range(5):
            dow_array_mask_mon[i] = False

        dow_array_mask = [dow_array_mask_mon]
        for j in range(1, 5):
            tmp_mask = np.zeros(np.shape(dow_array_mask_mon), np.bool)
            for i in range(1, len(dow_array_mask_mon)):
                if dow_array_mask_mon[i] == True:
                    tmp_mask[i - j] = True
                else:
                    tmp_mask[i] = False
            dow_array_mask.append(tmp_mask)
        return dow_array_mask

    dow_array_mask = get_mask(dow_array_mask_mon)

    dow = {0: 'mon', 1: 'tue', 2: 'wed', 3: 'thu', 4: 'fri'}
    features = {}

    for d in range(5):
        features[dow[d]] = {}
        shifted_stock = stocks[dow_array_mask[d]]

        if isShift == True: shifted_stock = shifted_stock[:-1]
        fe = fe_extr.feature_extractor(meta, shifted_stock)

        for feature_name in feature_list:
            features[dow[d]][feature_name], _ = getattr(fe, feature_name)()

    if isShift == True:
        label = np.argmax(stocks[dow_array_mask[predict_day]][1:, -3:],
                          axis=-1)
    else:
        label = np.argmax(stocks[dow_array_mask[predict_day]][:, -3:], axis=-1)

    return features, label
Esempio n. 4
0
def get_data_from_normal_weekly_train(stocks,
                                      meta,
                                      consider_lagday,
                                      feature_list=['ratio'],
                                      isShift=True):

    idx = len(stocks)
    label = {1: [], 2: [], 3: [], 4: [], 5: []}

    data = {1: [], 2: [], 3: [], 4: [], 5: []}

    while idx > 5:
        for i in range(1, 6):

            label[6 - i].append(np.argmax(stocks[idx - i, -3:], axis=-1))
        if isShift: idx = idx - 5

        for i in range(1, 6):
            data[6 - i].append(stocks[idx - i])
            #print(idx-i, ' ',stocks[idx-i][92])
        if not isShift: idx = idx - 5

    features = {}

    for d in data.keys():
        features[d] = {}
        data[d] = np.stack(data[d], axis=0)
        fe = fe_extr.feature_extractor(meta, data[d])

        for feature_name in feature_list:
            features[d][feature_name], _ = getattr(fe, feature_name)()

    feature_concat = []
    for i in range(5, 5 - consider_lagday, -1):
        for k in features[i]:
            feature_concat.append(features[i][k])

    data_feature = np.concatenate(feature_concat, axis=1)
    data = data_feature

    weekly_label = []
    for i in range(1, 6):
        weekly_label.append([ut.map_ud(_label) for _label in label[i]])

    weekly_label = np.sum(weekly_label, axis=0)

    for i in range(len(weekly_label)):
        if weekly_label[i] > 0 or weekly_label[i] == 0:
            weekly_label[i] = 1
        else:
            weekly_label[i] = 0

    return data, weekly_label, label
def create_velocity(stock, meta):

    fe = f_extr.feature_extractor(meta, stock)
    f_velocity, _ = getattr(fe, 'ratio')()
    velocity = f_velocity[1:] - f_velocity[:-1]
    stock = stock[1:]
    stock = np.concatenate((velocity, stock), axis=1)
    meta_v = [
        'velocity_1', 'velocity_v2', 'velocity_v3', 'velocity_v4',
        'velocity_v5'
    ] + meta

    return stock, meta_v
Esempio n. 6
0
def get_data_from_normal(stocks,
                         meta,
                         predict_day,
                         feature_list=['ratio'],
                         isShift=True):

    stocks = clean_stock(stocks, meta, feature_list)
    current_mask = np.ones(len(stocks), np.bool)

    def get_mask(current_mask):
        for i in range(5):
            current_mask[i] = False

        shift_array_mask = [current_mask]
        for j in range(1, 5):
            tmp_mask = np.zeros(np.shape(current_mask), np.bool)
            for i in range(1, len(current_mask)):
                if current_mask[i] == True:
                    tmp_mask[i - j] = True
                else:
                    tmp_mask[i] = False
            shift_array_mask.append(tmp_mask)
        return shift_array_mask

    mask = get_mask(current_mask)

    features = {}

    for d in range(5):
        features[d] = {}
        shifted_stock = stocks[mask[d]]
        if isShift == True: shifted_stock = shifted_stock[:-predict_day]

        fe = fe_extr.feature_extractor(meta, shifted_stock)

        for feature_name in feature_list:
            features[d][feature_name], _ = getattr(fe, feature_name)()

    if isShift == True:
        label = np.argmax(stocks[mask[0]][predict_day:, -3:], axis=-1)
    else:
        label = np.argmax(stocks[mask[0]][:, -3:], axis=-1)

    return features, label
Esempio n. 7
0
def get_data_from_normal_v2_train(stocks,
                                  meta,
                                  predict_day,
                                  consider_lagday,
                                  feature_list=['ratio'],
                                  isShift=True):

    idx = len(stocks)
    label = {1: [], 2: [], 3: [], 4: [], 5: []}

    data = {1: [], 2: [], 3: [], 4: [], 5: []}

    while idx > 5:
        for i in range(1, 6):

            label[6 - i].append(np.argmax(stocks[idx - i, -3:], axis=-1))
        if isShift: idx = idx - 5

        for i in range(1, 6):
            data[6 - i].append(stocks[idx - i])
            #print(idx-i, ' ',stocks[idx-i][92])
        if not isShift: idx = idx - 5

    features = {}

    for d in data.keys():
        features[d] = {}
        data[d] = np.stack(data[d], axis=0)
        fe = fe_extr.feature_extractor(meta, data[d])

        for feature_name in feature_list:
            features[d][feature_name], _ = getattr(fe, feature_name)()

    feature_concat = []
    for i in range(5, 5 - consider_lagday, -1):
        for k in features[i]:
            feature_concat.append(features[i][k])

    data_feature = np.concatenate(feature_concat, axis=1)
    data = data_feature
    label = label[predict_day]

    return data, label
Esempio n. 8
0
def clean_stock(single_stock, meta, feature_list):

    tmpStock = []

    fe = fe_extr.feature_extractor(meta, single_stock)

    feature_mask = []
    _, tmp_mask = getattr(fe, 'ratio')()
    feature_mask += tmp_mask

    for f in feature_list:
        _, tmp_mask = getattr(fe, f)()
        feature_mask += tmp_mask

    for i in range(len(single_stock)):
        if not np.isnan(single_stock[i, list(set(feature_mask))]).any():
            tmpStock.append(single_stock[i])
    single_stock = np.array(tmpStock)

    return single_stock
                tmp_mask[i] = False
        dow_array_mask.append(tmp_mask)
    return dow_array_mask


dow_array_mask = get_mask(dow_array_mask_mon)
dow = {0: 'mon', 1: 'tue', 2: 'wed', 3: 'thu', 4: 'fri'}
features = {}

isShift = True
for d in range(5):
    features[dow[d]] = {}
    shifted_stock = stocks[dow_array_mask[d]]

    if isShift == True: shifted_stock = shifted_stock[:-1]
    fe = f_extr.feature_extractor(meta_v, shifted_stock)

    for feature_name in feature_list:
        features[dow[d]][feature_name], _ = getattr(fe, feature_name)()
feature_concat = []
dow = {0: 'mon', 1: 'tue', 2: 'wed', 3: 'thu', 4: 'fri'}
for i in range(5):
    for k in features[dow[i]]:
        feature_concat.append(features[dow[i]][k])
train = np.concatenate(feature_concat, axis=1)

label = np.argmax(stocks[dow_array_mask[predict_day]][1:, -3:], axis=-1)

#***********Test****************
period_test = ('20180414', '20180610')