Esempio n. 1
0
 def execute_seims_model(self):
     """Run SEIMS for evaluating environmental effectiveness.
     If execution fails, the `self.economy` and `self.environment` will be set the worst values.
     """
     scoop_log('Scenario ID: %d, running SEIMS model...' % self.ID)
     self.model.scenario_id = self.ID
     self.modelout_dir = self.model.OutputDirectory
     self.model.run()
     self.modelrun = True
     return self.model.run_success
Esempio n. 2
0
def main():
    wtsd_name = get_watershed_name(
        'Specify watershed name to run scenario analysis.')
    if wtsd_name not in list(DEMO_MODELS.keys()):
        print('%s is not one of the available demo watershed: %s' %
              (wtsd_name, ','.join(list(DEMO_MODELS.keys()))))
        exit(-1)

    cur_path = UtilClass.current_path(lambda: 0)
    SEIMS_path = os.path.abspath(cur_path + '../../..')
    model_paths = ModelPaths(SEIMS_path, wtsd_name, DEMO_MODELS[wtsd_name])

    cf = write_scenario_analysis_config_file(model_paths,
                                             'scenario_analysis.ini')
    base_cfg = SAConfig(cf)  # type: SAConfig
    if base_cfg.bmps_cfg_unit == BMPS_CFG_UNITS[3]:  # SLPPOS
        cfg = SASlpPosConfig(cf)
    elif base_cfg.bmps_cfg_unit == BMPS_CFG_UNITS[2]:  # CONNFIELD
        cfg = SAConnFieldConfig(cf)
    else:  # Common spatial units, e.g., HRU and EXPLICITHRU
        cfg = SACommUnitConfig(cf)
    cfg.construct_indexes_units_gene()

    sce = SUScenario(cfg)

    scoop_log('### START TO SCENARIOS OPTIMIZING ###')
    start_t = time.time()

    fpop, fstats = sa_nsga2.main(sce)
    fpop.sort(key=lambda x: x.fitness.values)
    scoop_log(fstats)
    with open(cfg.opt.logbookfile, 'w', encoding='utf-8') as f:
        # In case of 'TypeError: write() argument 1 must be unicode, not str' in Python2.7
        #   when using unicode_literals, please use '%s' to concatenate string!
        f.write('%s' % fstats.__str__())

    end_t = time.time()
    scoop_log('Running time: %.2fs' % (end_t - start_t))
Esempio n. 3
0
def main(cfg):
    """Main workflow of NSGA-II based Scenario analysis."""
    random.seed()
    scoop_log('Population: %d, Generation: %d' % (cfg.opt.npop, cfg.opt.ngens))

    # Initial timespan variables
    stime = time.time()
    plot_time = 0.
    allmodels_exect = list()  # execute time of all model runs

    # create reference point for hypervolume
    ref_pt = numpy.array(worse_objects) * multi_weight * -1

    stats = tools.Statistics(lambda sind: sind.fitness.values)
    stats.register('min', numpy.min, axis=0)
    stats.register('max', numpy.max, axis=0)
    stats.register('avg', numpy.mean, axis=0)
    stats.register('std', numpy.std, axis=0)
    logbook = tools.Logbook()
    logbook.header = 'gen', 'evals', 'min', 'max', 'avg', 'std'

    # read observation data from MongoDB
    cali_obj = Calibration(cfg)

    # Read observation data just once
    model_cfg_dict = cali_obj.model.ConfigDict
    model_obj = MainSEIMS(args_dict=model_cfg_dict)
    obs_vars, obs_data_dict = model_obj.ReadOutletObservations(object_vars)

    # Initialize population
    param_values = cali_obj.initialize(cfg.opt.npop)
    pop = list()
    for i in range(cfg.opt.npop):
        ind = creator.Individual(param_values[i])
        ind.gen = 0
        ind.id = i
        ind.obs.vars = obs_vars[:]
        ind.obs.data = deepcopy(obs_data_dict)
        pop.append(ind)
    param_values = numpy.array(param_values)

    # Write calibrated values to MongoDB
    # TODO, extract this function, which is same with `Sensitivity::write_param_values_to_mongodb`.
    write_param_values_to_mongodb(cfg.model.host, cfg.model.port,
                                  cfg.model.db_name, cali_obj.ParamDefs,
                                  param_values)
    # get the low and up bound of calibrated parameters
    bounds = numpy.array(cali_obj.ParamDefs['bounds'])
    low = bounds[:, 0]
    up = bounds[:, 1]
    low = low.tolist()
    up = up.tolist()
    pop_select_num = int(cfg.opt.npop * cfg.opt.rsel)
    init_time = time.time() - stime

    def check_validation(fitvalues):
        """Check the validation of the fitness values of an individual."""
        flag = True
        for condidx, condstr in enumerate(conditions):
            if condstr is None:
                continue
            if not eval('%f%s' % (fitvalues[condidx], condstr)):
                flag = False
        return flag

    def evaluate_parallel(invalid_pops):
        """Evaluate model by SCOOP or map, and set fitness of individuals
         according to calibration step."""
        popnum = len(invalid_pops)
        labels = list()
        try:  # parallel on multi-processors or clusters using SCOOP
            from scoop import futures
            invalid_pops = list(
                futures.map(toolbox.evaluate, [cali_obj] * popnum,
                            invalid_pops))
        except ImportError or ImportWarning:  # Python build-in map (serial)
            invalid_pops = list(
                toolbox.map(toolbox.evaluate, [cali_obj] * popnum,
                            invalid_pops))
        for tmpind in invalid_pops:
            tmpfitnessv = list()
            for k, v in list(multiobj.items()):
                tmpvalues, tmplabel = tmpind.cali.efficiency_values(
                    k, object_names[k])
                tmpfitnessv += tmpvalues[:]
                labels += tmplabel[:]
            tmpind.fitness.values = tuple(tmpfitnessv)

        # Filter for a valid solution
        if filter_ind:
            invalid_pops = [
                tmpind for tmpind in invalid_pops
                if check_validation(tmpind.fitness.values)
            ]
            if len(invalid_pops) < 2:
                print(
                    'The initial population should be greater or equal than 2. '
                    'Please check the parameters ranges or change the sampling strategy!'
                )
                exit(2)
        return invalid_pops, labels  # Currently, `invalid_pops` contains evaluated individuals

    # Record the count and execute timespan of model runs during the optimization
    modelruns_count = {0: len(pop)}
    modelruns_time = {
        0: 0.
    }  # Total time counted according to evaluate_parallel()
    modelruns_time_sum = {
        0: 0.
    }  # Summarize time of every model runs according to pop

    # Generation 0 before optimization
    stime = time.time()
    pop, plotlables = evaluate_parallel(pop)
    modelruns_time[0] = time.time() - stime
    for ind in pop:
        allmodels_exect.append(
            [ind.io_time, ind.comp_time, ind.simu_time, ind.runtime])
        modelruns_time_sum[0] += ind.runtime

    # currently, len(pop) may less than pop_select_num
    pop = toolbox.select(pop, pop_select_num)
    # Output simulated data to json or pickle files for future use.
    output_population_details(pop, cfg.opt.simdata_dir, 0)

    record = stats.compile(pop)
    logbook.record(gen=0, evals=len(pop), **record)
    scoop_log(logbook.stream)

    # Begin the generational process
    output_str = '### Generation number: %d, Population size: %d ###\n' % (
        cfg.opt.ngens, cfg.opt.npop)
    scoop_log(output_str)
    UtilClass.writelog(cfg.opt.logfile, output_str, mode='replace')

    modelsel_count = {
        0: len(pop)
    }  # type: Dict[int, int] # newly added Pareto fronts

    for gen in range(1, cfg.opt.ngens + 1):
        output_str = '###### Generation: %d ######\n' % gen
        scoop_log(output_str)

        offspring = [toolbox.clone(ind) for ind in pop]
        # method1: use crowding distance (normalized as 0~1) as eta
        # tools.emo.assignCrowdingDist(offspring)
        # method2: use the index of individual at the sorted offspring list as eta
        if len(offspring
               ) >= 2:  # when offspring size greater than 2, mate can be done
            for i, ind1, ind2 in zip(range(len(offspring) // 2),
                                     offspring[::2], offspring[1::2]):
                if random.random() > cfg.opt.rcross:
                    continue
                eta = i
                toolbox.mate(ind1, ind2, eta, low, up)
                toolbox.mutate(ind1, eta, low, up, cfg.opt.rmut)
                toolbox.mutate(ind2, eta, low, up, cfg.opt.rmut)
                del ind1.fitness.values, ind2.fitness.values
        else:
            toolbox.mutate(offspring[0], 1., low, up, cfg.opt.rmut)
            del offspring[0].fitness.values

        # Evaluate the individuals with an invalid fitness
        invalid_inds = [ind for ind in offspring if not ind.fitness.valid]
        valid_inds = [ind for ind in offspring if ind.fitness.valid]
        if len(invalid_inds) == 0:  # No need to continue
            scoop_log(
                'Note: No invalid individuals available, the NSGA2 will be terminated!'
            )
            break

        # Write new calibrated parameters to MongoDB
        param_values = list()
        for idx, ind in enumerate(invalid_inds):
            ind.gen = gen
            ind.id = idx
            param_values.append(ind[:])
        param_values = numpy.array(param_values)
        write_param_values_to_mongodb(cfg.model.host, cfg.model.port,
                                      cfg.model.db_name, cali_obj.ParamDefs,
                                      param_values)
        # Count the model runs, and execute models
        invalid_ind_size = len(invalid_inds)
        modelruns_count.setdefault(gen, invalid_ind_size)
        stime = time.time()
        invalid_inds, plotlables = evaluate_parallel(invalid_inds)
        curtimespan = time.time() - stime
        modelruns_time.setdefault(gen, curtimespan)
        modelruns_time_sum.setdefault(gen, 0.)
        for ind in invalid_inds:
            allmodels_exect.append(
                [ind.io_time, ind.comp_time, ind.simu_time, ind.runtime])
            modelruns_time_sum[gen] += ind.runtime

        # Select the next generation population
        # Previous version may result in duplications of the same scenario in one Pareto front,
        #   thus, I decided to check and remove the duplications first.
        # pop = toolbox.select(pop + valid_inds + invalid_inds, pop_select_num)
        tmppop = pop + valid_inds + invalid_inds
        pop = list()
        unique_sces = dict()
        for tmpind in tmppop:
            if tmpind.gen in unique_sces and tmpind.id in unique_sces[
                    tmpind.gen]:
                continue
            if tmpind.gen not in unique_sces:
                unique_sces.setdefault(tmpind.gen, [tmpind.id])
            elif tmpind.id not in unique_sces[tmpind.gen]:
                unique_sces[tmpind.gen].append(tmpind.id)
            pop.append(tmpind)
        pop = toolbox.select(pop, pop_select_num)

        output_population_details(pop, cfg.opt.simdata_dir, gen)
        hyper_str = 'Gen: %d, New model runs: %d, ' \
                    'Execute timespan: %.4f, Sum of model run timespan: %.4f, ' \
                    'Hypervolume: %.4f\n' % (gen, invalid_ind_size,
                                             curtimespan, modelruns_time_sum[gen],
                                             hypervolume(pop, ref_pt))
        scoop_log(hyper_str)
        UtilClass.writelog(cfg.opt.hypervlog, hyper_str, mode='append')

        record = stats.compile(pop)
        logbook.record(gen=gen, evals=len(invalid_inds), **record)
        scoop_log(logbook.stream)

        # Count the newly generated near Pareto fronts
        new_count = 0
        for ind in pop:
            if ind.gen == gen:
                new_count += 1
        modelsel_count.setdefault(gen, new_count)

        # Plot 2D near optimal pareto front graphs,
        #   i.e., (NSE, RSR), (NSE, PBIAS), and (RSR,PBIAS)
        # And 3D near optimal pareto front graphs, i.e., (NSE, RSR, PBIAS)
        stime = time.time()
        front = numpy.array([ind.fitness.values for ind in pop])
        plot_pareto_front_single(front, plotlables, cfg.opt.out_dir, gen,
                                 'Near Pareto optimal solutions')
        plot_time += time.time() - stime

        # save in file
        # Header information
        output_str += 'generation\tcalibrationID\t'
        for kk, vv in list(object_names.items()):
            output_str += pop[0].cali.output_header(kk, vv, 'Cali')
        if cali_obj.cfg.calc_validation:
            for kkk, vvv in list(object_names.items()):
                output_str += pop[0].vali.output_header(kkk, vvv, 'Vali')

        output_str += 'gene_values\n'
        for ind in pop:
            output_str += '%d\t%d\t' % (ind.gen, ind.id)
            for kk, vv in list(object_names.items()):
                output_str += ind.cali.output_efficiency(kk, vv)
            if cali_obj.cfg.calc_validation:
                for kkk, vvv in list(object_names.items()):
                    output_str += ind.vali.output_efficiency(kkk, vvv)
            output_str += str(ind)
            output_str += '\n'
        UtilClass.writelog(cfg.opt.logfile, output_str, mode='append')

        # TODO: Figure out if we should terminate the evolution

    # Plot hypervolume and newly executed model count
    plot_hypervolume_single(cfg.opt.hypervlog, cfg.opt.out_dir)

    # Save newly added Pareto fronts of each generations
    new_fronts_count = numpy.array(list(modelsel_count.items()))
    numpy.savetxt('%s/new_pareto_fronts_count.txt' % cfg.opt.out_dir,
                  new_fronts_count,
                  delimiter=str(','),
                  fmt=str('%d'))

    # Save and print timespan information
    allmodels_exect = numpy.array(allmodels_exect)
    numpy.savetxt('%s/exec_time_allmodelruns.txt' % cfg.opt.out_dir,
                  allmodels_exect,
                  delimiter=str(' '),
                  fmt=str('%.4f'))
    scoop_log('Running time of all SEIMS models:\n'
              '\tIO\tCOMP\tSIMU\tRUNTIME\n'
              'MAX\t%s\n'
              'MIN\t%s\n'
              'AVG\t%s\n'
              'SUM\t%s\n' %
              ('\t'.join('%.3f' % t for t in allmodels_exect.max(0)),
               '\t'.join('%.3f' % t
                         for t in allmodels_exect.min(0)), '\t'.join(
                             '%.3f' % t
                             for t in allmodels_exect.mean(0)), '\t'.join(
                                 '%.3f' % t for t in allmodels_exect.sum(0))))

    exec_time = 0.
    for genid, tmptime in list(modelruns_time.items()):
        exec_time += tmptime
    exec_time_sum = 0.
    for genid, tmptime in list(modelruns_time_sum.items()):
        exec_time_sum += tmptime
    allcount = 0
    for genid, tmpcount in list(modelruns_count.items()):
        allcount += tmpcount

    scoop_log('Initialization timespan: %.4f\n'
              'Model execution timespan: %.4f\n'
              'Sum of model runs timespan: %.4f\n'
              'Plot Pareto graphs timespan: %.4f' %
              (init_time, exec_time, exec_time_sum, plot_time))

    return pop, logbook
Esempio n. 4
0
    for genid, tmpcount in list(modelruns_count.items()):
        allcount += tmpcount

    scoop_log('Initialization timespan: %.4f\n'
              'Model execution timespan: %.4f\n'
              'Sum of model runs timespan: %.4f\n'
              'Plot Pareto graphs timespan: %.4f' %
              (init_time, exec_time, exec_time_sum, plot_time))

    return pop, logbook


if __name__ == "__main__":
    cf, method = get_optimization_config()
    cali_cfg = CaliConfig(cf, method=method)

    scoop_log('### START TO CALIBRATION OPTIMIZING ###')
    startT = time.time()

    fpop, fstats = main(cali_cfg)

    fpop.sort(key=lambda x: x.fitness.values)
    scoop_log(fstats)
    with open(cali_cfg.opt.logbookfile, 'w', encoding='utf-8') as f:
        # In case of 'TypeError: write() argument 1 must be unicode, not str' in Python2.7
        #   when using unicode_literals, please use '%s' to concatenate string!
        f.write('%s' % fstats.__str__())
    endT = time.time()
    scoop_log('### END OF CALIBRATION OPTIMIZING ###')
    scoop_log('Running time: %.2fs' % (endT - startT))
Esempio n. 5
0
def main(sceobj):
    # type: (SUScenario) -> ()
    """Main workflow of NSGA-II based Scenario analysis."""
    if sceobj.cfg.eval_info['BASE_ENV'] < 0:
        run_base_scenario(sceobj)
        print('The environment effectiveness value of the '
              'base scenario is %.2f' % sceobj.cfg.eval_info['BASE_ENV'])

    random.seed()

    # Initial timespan variables
    stime = time.time()
    plot_time = 0.
    allmodels_exect = list()  # execute time of all model runs

    pop_size = sceobj.cfg.opt.npop
    gen_num = sceobj.cfg.opt.ngens
    cx_rate = sceobj.cfg.opt.rcross
    mut_perc = sceobj.cfg.opt.pmut
    mut_rate = sceobj.cfg.opt.rmut
    sel_rate = sceobj.cfg.opt.rsel
    pop_select_num = int(pop_size * sel_rate)

    ws = sceobj.cfg.opt.out_dir
    cfg_unit = sceobj.cfg.bmps_cfg_unit
    cfg_method = sceobj.cfg.bmps_cfg_method
    worst_econ = sceobj.worst_econ
    worst_env = sceobj.worst_env
    # available gene value list
    possible_gene_values = list(sceobj.bmps_params.keys())
    if 0 not in possible_gene_values:
        possible_gene_values.append(0)
    units_info = sceobj.cfg.units_infos
    suit_bmps = sceobj.suit_bmps
    gene_to_unit = sceobj.cfg.gene_to_unit
    unit_to_gene = sceobj.cfg.unit_to_gene
    updown_units = sceobj.cfg.updown_units

    scoop_log('Population: %d, Generation: %d' % (pop_size, gen_num))
    scoop_log('BMPs configure unit: %s, configuration method: %s' % (cfg_unit, cfg_method))

    # create reference point for hypervolume
    ref_pt = numpy.array([worst_econ, worst_env]) * multi_weight * -1

    stats = tools.Statistics(lambda sind: sind.fitness.values)
    stats.register('min', numpy.min, axis=0)
    stats.register('max', numpy.max, axis=0)
    stats.register('avg', numpy.mean, axis=0)
    stats.register('std', numpy.std, axis=0)

    logbook = tools.Logbook()
    logbook.header = 'gen', 'evals', 'min', 'max', 'avg', 'std'

    # Initialize population
    initialize_byinputs = False
    if sceobj.cfg.initial_byinput and sceobj.cfg.input_pareto_file is not None and \
        sceobj.cfg.input_pareto_gen > 0:  # Initial by input Pareto solutions
        inpareto_file = sceobj.modelcfg.model_dir + os.sep + sceobj.cfg.input_pareto_file
        if os.path.isfile(inpareto_file):
            inpareto_solutions = read_pareto_solutions_from_txt(inpareto_file,
                                                                sce_name='scenario',
                                                                field_name='gene_values')
            if sceobj.cfg.input_pareto_gen in inpareto_solutions:
                pareto_solutions = inpareto_solutions[sceobj.cfg.input_pareto_gen]
                pop = toolbox.population_byinputs(sceobj.cfg, pareto_solutions)  # type: List
                initialize_byinputs = True
    if not initialize_byinputs:
        pop = toolbox.population(sceobj.cfg, n=pop_size)  # type: List

    init_time = time.time() - stime

    def delete_fitness(new_ind):
        """Delete the fitness and other information of new individual."""
        del new_ind.fitness.values
        new_ind.gen = -1
        new_ind.id = -1
        new_ind.io_time = 0.
        new_ind.comp_time = 0.
        new_ind.simu_time = 0.
        new_ind.runtime = 0.

    def check_validation(fitvalues):
        """Check the validation of the fitness values of an individual."""
        flag = True
        for condidx, condstr in enumerate(conditions):
            if condstr is None:
                continue
            if not eval('%f%s' % (fitvalues[condidx], condstr)):
                flag = False
        return flag

    def evaluate_parallel(invalid_pops):
        """Evaluate model by SCOOP or map, and get fitness of individuals."""
        popnum = len(invalid_pops)
        try:
            # parallel on multiprocesor or clusters using SCOOP
            from scoop import futures
            invalid_pops = list(futures.map(toolbox.evaluate, [sceobj.cfg] * popnum, invalid_pops))
        except ImportError or ImportWarning:
            # serial
            invalid_pops = list(map(toolbox.evaluate, [sceobj.cfg] * popnum, invalid_pops))

        # Filter for a valid solution
        if filter_ind:
            invalid_pops = [tmpind for tmpind in invalid_pops
                            if check_validation(tmpind.fitness.values)]
            if len(invalid_pops) < 2:
                print('The initial population should be greater or equal than 2. '
                      'Please check the parameters ranges or change the sampling strategy!')
                exit(2)
        return invalid_pops  # Currently, `invalid_pops` contains evaluated individuals

    # Record the count and execute timespan of model runs during the optimization
    modelruns_count = {0: len(pop)}
    modelruns_time = {0: 0.}  # Total time counted according to evaluate_parallel()
    modelruns_time_sum = {0: 0.}  # Summarize time of every model runs according to pop

    # Generation 0 before optimization
    stime = time.time()
    pop = evaluate_parallel(pop)
    modelruns_time[0] = time.time() - stime
    for ind in pop:
        ind.gen = 0
        allmodels_exect.append([ind.io_time, ind.comp_time, ind.simu_time, ind.runtime])
        modelruns_time_sum[0] += ind.runtime

    # Currently, len(pop) may less than pop_select_num
    pop = toolbox.select(pop, pop_select_num)
    record = stats.compile(pop)
    logbook.record(gen=0, evals=len(pop), **record)
    scoop_log(logbook.stream)
    front = numpy.array([ind.fitness.values for ind in pop])
    # save front for further possible use
    numpy.savetxt(sceobj.scenario_dir + os.sep + 'pareto_front_gen0.txt',
                  front, delimiter=str(' '), fmt=str('%.4f'))

    # Begin the generational process
    output_str = '### Generation number: %d, Population size: %d ###\n' % (gen_num, pop_size)
    scoop_log(output_str)
    UtilClass.writelog(sceobj.cfg.opt.logfile, output_str, mode='replace')

    modelsel_count = {0: len(pop)}  # type: Dict[int, int] # newly added Pareto fronts

    for gen in range(1, gen_num + 1):
        output_str = '###### Generation: %d ######\n' % gen
        scoop_log(output_str)
        offspring = [toolbox.clone(ind) for ind in pop]
        if len(offspring) >= 2:  # when offspring size greater than 2, mate can be done
            for ind1, ind2 in zip(offspring[::2], offspring[1::2]):
                old_ind1 = toolbox.clone(ind1)
                old_ind2 = toolbox.clone(ind2)
                if random.random() <= cx_rate:
                    if cfg_method == BMPS_CFG_METHODS[3]:  # SLPPOS method
                        toolbox.mate_slppos(ind1, ind2, sceobj.cfg.hillslp_genes_num)
                    elif cfg_method == BMPS_CFG_METHODS[2]:  # UPDOWN method
                        toolbox.mate_updown(updown_units, gene_to_unit, unit_to_gene, ind1, ind2)
                    else:
                        toolbox.mate_rdm(ind1, ind2)

                if cfg_method == BMPS_CFG_METHODS[0]:
                    toolbox.mutate_rdm(possible_gene_values, ind1, perc=mut_perc, indpb=mut_rate)
                    toolbox.mutate_rdm(possible_gene_values, ind2, perc=mut_perc, indpb=mut_rate)
                else:
                    tagnames = None
                    if sceobj.cfg.bmps_cfg_unit == BMPS_CFG_UNITS[3]:
                        tagnames = sceobj.cfg.slppos_tagnames
                    toolbox.mutate_rule(units_info, gene_to_unit, unit_to_gene,
                                        suit_bmps, ind1,
                                        perc=mut_perc, indpb=mut_rate,
                                        unit=cfg_unit, method=cfg_method,
                                        tagnames=tagnames,
                                        thresholds=sceobj.cfg.boundary_adaptive_threshs)
                    toolbox.mutate_rule(units_info, gene_to_unit, unit_to_gene,
                                        suit_bmps, ind2,
                                        perc=mut_perc, indpb=mut_rate,
                                        unit=cfg_unit, method=cfg_method,
                                        tagnames=tagnames,
                                        thresholds=sceobj.cfg.boundary_adaptive_threshs)
                if check_individual_diff(old_ind1, ind1):
                    delete_fitness(ind1)
                if check_individual_diff(old_ind2, ind2):
                    delete_fitness(ind2)

        # Evaluate the individuals with an invalid fitness
        invalid_inds = [ind for ind in offspring if not ind.fitness.valid]
        valid_inds = [ind for ind in offspring if ind.fitness.valid]
        invalid_ind_size = len(invalid_inds)
        if invalid_ind_size == 0:  # No need to continue
            scoop_log('Note: No invalid individuals available, the NSGA2 will be terminated!')
            break
        modelruns_count.setdefault(gen, invalid_ind_size)
        stime = time.time()
        invalid_inds = evaluate_parallel(invalid_inds)
        curtimespan = time.time() - stime
        modelruns_time.setdefault(gen, curtimespan)
        modelruns_time_sum.setdefault(gen, 0.)
        for ind in invalid_inds:
            ind.gen = gen
            allmodels_exect.append([ind.io_time, ind.comp_time, ind.simu_time, ind.runtime])
            modelruns_time_sum[gen] += ind.runtime

        # Select the next generation population
        # Previous version may result in duplications of the same scenario in one Pareto front,
        #   thus, I decided to check and remove the duplications first.
        # pop = toolbox.select(pop + valid_inds + invalid_inds, pop_select_num)
        tmppop = pop + valid_inds + invalid_inds
        pop = list()
        unique_sces = dict()
        for tmpind in tmppop:
            if tmpind.gen in unique_sces and tmpind.id in unique_sces[tmpind.gen]:
                continue
            if tmpind.gen not in unique_sces:
                unique_sces.setdefault(tmpind.gen, [tmpind.id])
            elif tmpind.id not in unique_sces[tmpind.gen]:
                unique_sces[tmpind.gen].append(tmpind.id)
            pop.append(tmpind)
        pop = toolbox.select(pop, pop_select_num)

        hyper_str = 'Gen: %d, New model runs: %d, ' \
                    'Execute timespan: %.4f, Sum of model run timespan: %.4f, ' \
                    'Hypervolume: %.4f\n' % (gen, invalid_ind_size,
                                             curtimespan, modelruns_time_sum[gen],
                                             hypervolume(pop, ref_pt))
        scoop_log(hyper_str)
        UtilClass.writelog(sceobj.cfg.opt.hypervlog, hyper_str, mode='append')

        record = stats.compile(pop)
        logbook.record(gen=gen, evals=len(invalid_inds), **record)
        scoop_log(logbook.stream)

        # Count the newly generated near Pareto fronts
        new_count = 0
        for ind in pop:
            if ind.gen == gen:
                new_count += 1
        modelsel_count.setdefault(gen, new_count)

        # Plot 2D near optimal pareto front graphs
        stime = time.time()
        front = numpy.array([ind.fitness.values for ind in pop])
        # save front for further possible use
        numpy.savetxt(sceobj.scenario_dir + os.sep + 'pareto_front_gen%d.txt' % gen,
                      front, delimiter=str(' '), fmt=str('%.4f'))

        # Comment out the following plot code if matplotlib does not work.
        try:
            from scenario_analysis.visualization import plot_pareto_front_single
            pareto_title = 'Near Pareto optimal solutions'
            xlabel = 'Economy'
            ylabel = 'Environment'
            if sceobj.cfg.plot_cfg.plot_cn:
                xlabel = r'经济净投入'
                ylabel = r'环境效益'
                pareto_title = r'近似最优Pareto解集'
            plot_pareto_front_single(front, [xlabel, ylabel],
                                     ws, gen, pareto_title,
                                     plot_cfg=sceobj.cfg.plot_cfg)
        except Exception as e:
            scoop_log('Exception caught: %s' % str(e))
        plot_time += time.time() - stime

        # save in file
        output_str += 'generation\tscenario\teconomy\tenvironment\tgene_values\n'
        for indi in pop:
            output_str += '%d\t%d\t%f\t%f\t%s\n' % (indi.gen, indi.id, indi.fitness.values[0],
                                                    indi.fitness.values[1], str(indi))
        UtilClass.writelog(sceobj.cfg.opt.logfile, output_str, mode='append')

    # Plot hypervolume and newly executed model count
    # Comment out the following plot code if matplotlib does not work.
    try:
        from scenario_analysis.visualization import plot_hypervolume_single
        plot_hypervolume_single(sceobj.cfg.opt.hypervlog, ws, plot_cfg=sceobj.cfg.plot_cfg)
    except Exception as e:
        scoop_log('Exception caught: %s' % str(e))

    # Save newly added Pareto fronts of each generations
    new_fronts_count = numpy.array(list(modelsel_count.items()))
    numpy.savetxt('%s/new_pareto_fronts_count.txt' % ws,
                  new_fronts_count, delimiter=str(','), fmt=str('%d'))

    # Save and print timespan information
    allmodels_exect = numpy.array(allmodels_exect)
    numpy.savetxt('%s/exec_time_allmodelruns.txt' % ws, allmodels_exect,
                  delimiter=str(' '), fmt=str('%.4f'))
    scoop_log('Running time of all SEIMS models:\n'
              '\tIO\tCOMP\tSIMU\tRUNTIME\n'
              'MAX\t%s\n'
              'MIN\t%s\n'
              'AVG\t%s\n'
              'SUM\t%s\n' % ('\t'.join('%.3f' % v for v in allmodels_exect.max(0)),
                             '\t'.join('%.3f' % v for v in allmodels_exect.min(0)),
                             '\t'.join('%.3f' % v for v in allmodels_exect.mean(0)),
                             '\t'.join('%.3f' % v for v in allmodels_exect.sum(0))))

    exec_time = 0.
    for genid, tmptime in list(modelruns_time.items()):
        exec_time += tmptime
    exec_time_sum = 0.
    for genid, tmptime in list(modelruns_time_sum.items()):
        exec_time_sum += tmptime
    allcount = 0
    for genid, tmpcount in list(modelruns_count.items()):
        allcount += tmpcount

    scoop_log('Initialization timespan: %.4f\n'
              'Model execution timespan: %.4f\n'
              'Sum of model runs timespan: %.4f\n'
              'Plot Pareto graphs timespan: %.4f' % (init_time, exec_time,
                                                     exec_time_sum, plot_time))

    return pop, logbook
Esempio n. 6
0
    return pop, logbook


if __name__ == "__main__":
    in_cf = get_config_parser()
    base_cfg = SAConfig(in_cf)  # type: SAConfig

    if base_cfg.bmps_cfg_unit == BMPS_CFG_UNITS[3]:  # SLPPOS
        sa_cfg = SASlpPosConfig(in_cf)
    elif base_cfg.bmps_cfg_unit == BMPS_CFG_UNITS[2]:  # CONNFIELD
        sa_cfg = SAConnFieldConfig(in_cf)
    else:  # Common spatial units, e.g., HRU and EXPLICITHRU
        sa_cfg = SACommUnitConfig(in_cf)
    sa_cfg.construct_indexes_units_gene()

    sce = SUScenario(sa_cfg)

    scoop_log('### START TO SCENARIOS OPTIMIZING ###')
    startT = time.time()

    fpop, fstats = main(sce)
    fpop.sort(key=lambda x: x.fitness.values)
    scoop_log(fstats)
    with open(sa_cfg.opt.logbookfile, 'w', encoding='utf-8') as f:
        # In case of 'TypeError: write() argument 1 must be unicode, not str' in Python2.7
        #   when using unicode_literals, please use '%s' to concatenate string!
        f.write('%s' % fstats.__str__())

    endT = time.time()
    scoop_log('Running time: %.2fs' % (endT - startT))