def compute_max_file_length(paths):
    """
    Return the integer sum of average length and standard length deviation for the given files
    """

    file_lengths = [compute_file_length(path) for path in paths]

    return int(
        math.ceil(average(file_lengths) + standard_deviation(file_lengths)))
Esempio n. 2
0
    def test_average(self):
        date_list = [datetime.timedelta(seconds=1800), datetime.timedelta(seconds=1800),
                     datetime.timedelta(seconds=7200), datetime.timedelta(seconds=1),
                     datetime.timedelta(seconds=1000), datetime.timedelta(seconds=1000),
                     datetime.timedelta(days=1, seconds=13600)]

        result = average(date_list)
        expected = date_list[0]

        self.assertEqual(type(expected), type(result))
Esempio n. 3
0
def compute_max_file_length(paths):
    """
    Return the integer sum of average length and standard length deviation for the given files
    """

    file_lengths = [compute_file_length(path) for path in paths]

    return int(math.ceil(
        average(file_lengths) + standard_deviation(file_lengths)
    ))
Esempio n. 4
0
def grayscale(im, verbose=0):
    res = []
    w, h = float(len(im)), float(len(im[0]))
    for iy, y in enumerate(im):
        res.append([])
        for ix, x in enumerate(y):
            res[-1].append(utility.average(x))
            if verbose > 0:
                utility.show_bar(iy * h + ix,
                                 w * h,
                                 number_limit=True,
                                 message='Grayscaling: ')
    return np.array(res, dtype=float)
Esempio n. 5
0
    def response_time(self) -> dict:
        """
        Calculates the average response time per college
            :return: dictionary of university and average time mapping
            :rtype: dict
        """
        response = {}
        university_response = {}
        # Calling private member data from the parent class
        messages = self.get_msg()
        chat_groups = self.get_chat_groups()
        user = self.get_user()

        for msg in range(len(messages)):
            # checks for the current and next message if first user is
            # applicant and another is mentor then the difference of the time stamp is
            # calculated.
            c_id = messages[msg][2]
            mentor = chat_groups[int(c_id)][1]

            if self.is_applicant(messages[msg][1]):
                if self.is_applicant(messages[msg + 1][1]):
                    logger.info('Both are applicants')
                    pass
                if self.is_mentor(mentor):
                    diff = difference(messages[msg][4], messages[msg + 1][4])
                    if user[mentor] not in response:
                        response[user[mentor]] = []
                    response[user[mentor]].append(diff)

        for i in response:
            avg = average(response[i])
            university_response.update({i: avg})
            print("Average response time for university ({}) is: {}".format(
                i, avg))
            logger.info(
                "Average response time for university ({}) is: {}".format(
                    i, avg))

        return university_response
Esempio n. 6
0
            if line.startswith("Policy 2"):
                parts = line.split()
                policy2_data.append(float(parts[2]))
            if line.startswith("Policy 3"):
                parts = line.split()
                policy3_data.append(float(parts[2]))
            if line.startswith("Openloop"):
                parts = line.split()
                openloop_data.append(float(parts[1]))
            if line.startswith("Naive"):
                parts = line.split()
                naive_data.append(float(parts[1]))

            if len(naive_data) == n: break

    print("Average over {} tasks:".format(len(naive_data)))
    # print("{:19}: {:.2f}".format("Policy average", util.average(policy_data)))
    print("{:19}: {:.2f}".format("Naive average", util.average(naive_data)))
    # print("{:19}: {:.2f}".format("Openloop average", util.average(openloop_data)))
    print("{:19}: {:.2f}".format("Policy 1 average", util.average(policy1_data)))
    print("{:19}: {}".format("  # supermaps", noM[1]))
    print("{:19}: {}".format("  # lambda calls", nol[1]))
    # print("{:19}: {:.2f}".format("Policy 2 average", util.average(policy2_data)))
    # print("{:19}: {}".format("  # lambda calls", nol[1]))
    # print("{:19}: {:.2f}".format("Policy 3 average", util.average(policy3_data)))
    # print("{:19}: {}".format("  # lambda calls", nol[3]))
    print("{:19}: {:.2f}".format("Online average", util.average(online_data)))
    print("{:19}: {}".format("  # supermaps", noM[0]))
    print("{:19}: {}".format("  # lambda calls", nol[0]))

Esempio n. 7
0
def average_damp(f):
    return lambda x: average(x, f(x))