Esempio n. 1
0
 def post(request):
     response = RequestResponse()
     if check_params(request.POST, ['sid', 'pid']):
         post_data = request.POST
         user = Writer.get_user_by_session(post_data['sid'])
         if user is not None:
             if Post.objects.filter(pk=post_data['pid']).exists():
                 post_object = Post.objects.get(pk=post_data['pid'])
                 if post_object.writer == user:
                     post_object.delete()
                     response.set_status(200)
                     response.set_message('Post uploaded successfully')
                 else:
                     response.set_status(400)
                     response.set_message('Do not have access to delete')
             else:
                 response.set_status(400)
                 response.set_message('Post not found. Invalid "pid"')
         else:
             response.set_status(400)
             response.set_message('Incorrect session')
     else:
         response.set_status(400)
         response.set_message('Incorrect Parameters')
     return Response(response.respond())
Esempio n. 2
0
 def get(request):
     response = RequestResponse()
     if check_params(request.GET, ['auth', 'email']):
         get_data = request.GET
         if Writer.objects.filter(email=get_data['email']).exists():
             writer_object = Writer.objects.get(email=get_data['email'])
             if not writer_object.is_active:
                 if EmailValidation.objects.filter(
                         code=get_data['auth'],
                         writer=writer_object).exists():
                     validation_object = EmailValidation.objects.get(
                         code=get_data['auth'], writer=writer_object)
                     writer_object.is_active = True
                     writer_object.save()
                     validation_object.delete()
                     response.set_status(200)
                     response.set_message('User successfully activated')
                 else:
                     response.set_status(400)
                     response.set_message('Validation code incorrect')
             else:
                 response.set_status(400)
                 response.set_message('Already activated')
         else:
             response.set_status(400)
             response.set_message('User not found')
     else:
         response.set_status(400)
         response.set_message('Incorrect Parameters')
     return Response(response.respond())
Esempio n. 3
0
 def post(request):
     response = RequestResponse()
     if check_params(request.POST, ['email', 'password']):
         post_data = request.POST
         user = Writer.get_user_by_email_password(post_data['email'],
                                                  post_data['password'])
         if user is not None and user.is_active:
             data = Login.create_session_for_user(user)
             response.set_data(data)
             response.set_status(200)
             response.set_message('Session created successfully')
         elif user is not None and not user.is_active:
             response.set_status(400)
             response.set_message('Account not active')
         else:
             response.set_status(400)
             response.set_message('Incorrect credentials')
     elif check_params(request.POST, ['username', 'password']):
         post_data = request.POST
         user = Writer.get_user_by_username_password(
             post_data['username'], post_data['password'])
         if user is not None and user.is_active:
             data = Login.create_session_for_user(user)
             response.set_data(data)
             response.set_status(200)
             response.set_message('Session created successfully')
         elif user is not None and not user.is_active:
             response.set_status(400)
             response.set_message('Account not active')
         else:
             response.set_status(400)
             response.set_message('Incorrect credentials')
     else:
         response.set_status(400)
         response.set_message('Incorrect Parameters')
     return Response(response.respond())
Esempio n. 4
0
 def post(request):
     response = RequestResponse()
     if check_params(request.POST, ['sid']):
         post_data = request.POST
         if Session.objects.filter(code=post_data['sid']).exists():
             session_object = Session.objects.get(code=post_data['sid'])
             session_object.delete()
             response.set_status(200)
             response.set_message('Session removed successfully')
         else:
             response.set_status(400)
             response.set_message('Incorrect session')
     else:
         response.set_status(400)
         response.set_message('Incorrect Parameters')
     return Response(response.respond())
Esempio n. 5
0
    def post(request):
        response = RequestResponse()
        if check_params(request.POST,
                        ['name', 'username', 'password', 'email', 'phone']):
            post_data = request.POST
            if Writer.objects.filter(email=post_data['email']).exists() or \
                    Writer.objects.filter(username=post_data['username']).exists():
                response.set_status(400)
                response.set_message('User already registered')
            else:
                user = Writer()
                user.username = post_data['username']
                user.name = post_data['name']
                user.email = post_data['email']
                user.phone = post_data['phone']
                user.password = Writer.encrypt_password(post_data['password'])
                user.save()
                four_digit_code = random4()
                new_validation = EmailValidation(writer=user,
                                                 code=four_digit_code)
                new_validation.save()
                try:
                    email_subject = 'Welcome to the Wall!'
                    link = 'http://' + request.META['HTTP_HOST'] + '/api/activate/?email=' + \
                           user.email + '&auth=' + four_digit_code
                    email_body = "Hi %s,\rwelcome to the wall. Your activation code is %s.\r\r" \
                                 "Or you can directly activate your account by clicking here: %s" \
                                 % (user.name, four_digit_code, link)
                    send(user.name, user.email, email_subject, email_body)
                except KeyError:
                    data = {'activation_code': four_digit_code}
                    response.set_data(data)
                response.set_status(200)
                response.set_message('User successfully added')

        else:
            response.set_status(400)
            response.set_message('Incorrect Parameters')
        return Response(response.respond())
Esempio n. 6
0
 def post(request):
     response = RequestResponse()
     if check_params(request.POST, ['sid', 'title', 'content']):
         post_data = request.POST
         user = Writer.get_user_by_session(post_data['sid'])
         if user is not None:
             if len(post_data['content']) <= 2048:
                 new_post = Post(writer=user,
                                 title=post_data['title'],
                                 content=post_data['content'])
                 new_post.save()
                 response.set_status(200)
                 response.set_message('Post uploaded successfully')
             else:
                 response.set_status(400)
                 response.set_message('Content too large')
         else:
             response.set_status(400)
             response.set_message('Incorrect session')
     else:
         response.set_status(400)
         response.set_message('Incorrect Parameters')
     return Response(response.respond())
Esempio n. 7
0
 def post(request):
     response = RequestResponse()
     if check_params(request.POST, ['sid', 'pid', 'comment']):
         post_data = request.POST
         user = Writer.get_user_by_session(post_data['sid'])
         if user is not None:
             if Post.objects.filter(pk=post_data['pid']).exists():
                 post_object = Post.objects.get(pk=post_data['pid'])
                 new_comment = Comment(post=post_object,
                                       commenter=user,
                                       content=post_data['comment'])
                 new_comment.save()
                 response.set_status(200)
                 response.set_message('Comment added successfully')
             else:
                 response.set_status(400)
                 response.set_message('Invalid post id')
         else:
             response.set_status(400)
             response.set_message('Incorrect session')
     else:
         response.set_status(400)
         response.set_message('Incorrect Parameters')
     return Response(response.respond())
Esempio n. 8
0
def main_classification(js_dirs=arg_obj['d'],
                        js_files=arg_obj['f'],
                        labels_f=arg_obj['lf'],
                        labels_d=arg_obj['l'],
                        model=arg_obj['m'],
                        threshold=arg_obj['th'],
                        level=arg_obj['level'],
                        features_choice=arg_obj['features'],
                        n=arg_obj['n'][0],
                        analysis_path=arg_obj['analysis_path'][0]):
    """
        Main function, performs a static analysis (syntactic) of JavaScript files given as input
        before predicting if the executables are benign or malicious.

        -------
        Parameters:
        - js_dirs: list of strings
            Directories containing the JS files to be analysed.
        - js_files: list of strings
            Files to be analysed.
        - labels_f: list of strings
            Indicates the label's name of the files considered: either benign or malicious.
        - labels_d: list of strings
            Indicates the label's name of the current data: either benign or malicious.
        - model: str
            Path to the model used to classify the new files
        - threshold: int
            Threshold over which all samples are considered malicious
        - n: Integer
            Stands for the size of the sliding-window which goes through the units contained in the
            files to be analysed.
        - level: str
            Either 'tokens', 'ast', 'cfg', 'pdg', or 'pdg-dfg' depending on the units you want
            to extract.
        - analysis_path: str
            Folder to store the features' analysis results in.
        - features_choice: str
            Either 'ngrams' or 'value' depending on the features you want.
        Default values are the ones given in the command lines or in the
        ArgumentParser object (function parsingCommands()).

        -------
        Returns:
        The results of the static analysis of the files given as input:
        either benign or malicious
    """

    if js_dirs is None and js_files is None:
        logging.error('Please, indicate at least a directory (--d option) '
                      'or a JS file (--f option) to be analyzed')

    elif js_dirs is not None and labels_d is not None and len(js_dirs) != len(
            labels_d):
        logging.error(
            'Please, indicate as many directory labels (--l option) as the number %s '
            'of directories to analyze', str(len(js_dirs)))

    elif js_files is not None and labels_f is not None and len(
            js_files) != len(labels_f):
        logging.error(
            'Please, indicate as many file labels (--lf option) as the number %s '
            'of files to analyze', str(len(js_files)))

    elif model is None:
        logging.error(
            'Please, indicate a model (--m option) to be used to classify new files.\n'
            '(see >$ python3 <path-of-clustering/learner.py> -help) to build a model)'
        )

    elif utility.check_params(level, features_choice) == 0:
        return

    else:
        features2int_dict_path = os.path.join(
            analysis_path, 'Features', features_choice[0],
            level[0] + '_selected_features_99')

        names, attributes, labels = static_analysis.main_analysis\
            (js_dirs=js_dirs, labels_dirs=labels_d, js_files=js_files, labels_files=labels_f,
             n=n, level=level[0], features_choice=features_choice[0],
             features2int_dict_path=features2int_dict_path)

        if names:
            # Uncomment to save the analysis results in pickle objects.
            """
            machine_learning.save_analysis_results(os.path.join(js_dirs[0], "Analysis-res-stored"),
                                                   names, attributes, labels)
            """

            test_model(names,
                       labels,
                       attributes,
                       model=model[0],
                       threshold=threshold[0])

        else:
            logging.warning('No valid JS file found for the analysis')
Esempio n. 9
0
 def post(request):
     response = RequestResponse()
     if check_params(request.POST, []):
         post_data = request.POST
         max_per_request = 5
         first_post = 0
         if 'max_per_request' in post_data:
             try:
                 max_per_request = int(post_data['max_per_request'])
             except ValueError:
                 pass
         if 'first_post' in post_data:
             try:
                 first_post = int(post_data['first_post'])
             except ValueError:
                 pass
         data = {'next_post_serial': first_post + max_per_request}
         posts = Post.objects.filter(
             published=True).order_by('-created_at')[first_post:first_post +
                                                     max_per_request]
         selected_posts = []
         for post in posts:
             all_comments = Comment.objects.filter(
                 published=True, post=post).order_by('created_at')
             comments = []
             for comment in all_comments:
                 one_comment = {
                     'commenter':
                     comment.commenter.pk,
                     'commenter_username':
                     comment.commenter.username,
                     'comment':
                     comment.content,
                     'comment_published':
                     comment.created_at.strftime("%A, %d. %B %Y %I:%M%p")
                 }
                 comments.append(one_comment)
             one_post = {
                 'post_id':
                 post.id,
                 'post_title':
                 post.title,
                 'post_content':
                 post.content,
                 'post_published':
                 post.created_at.strftime("%A, %d. %B %Y %I:%M%p"),
                 'post_writer':
                 post.writer.pk,
                 'post_writer_username':
                 post.writer.username,
                 'comments':
                 comments
             }
             selected_posts.append(one_post)
         data['posts'] = selected_posts
         response.set_status(200)
         response.set_message('Post loaded successfully')
         response.set_data(data)
     else:
         response.set_status(400)
         response.set_message('Incorrect Parameters')
     return Response(response.respond())
Esempio n. 10
0
def main_learn(js_dirs=arg_obj['d'],
               js_dirs_validate=arg_obj['vd'],
               labels_validate=arg_obj['vl'],
               labels_d=arg_obj['l'],
               model_dir=arg_obj['md'],
               model_name=arg_obj['mn'],
               print_score=arg_obj['ps'],
               print_res=arg_obj['pr'],
               level=arg_obj['level'],
               n=arg_obj['n'][0],
               estimators=arg_obj['nt'],
               features_choice=arg_obj['features'],
               analysis_path=arg_obj['analysis_path'][0]):
    """
        Main function, performs a static analysis (syntactic) of JavaScript files given as input
        to build a model to classify future JavaScript files.

        -------
        Parameters:
        - js_dirs: list of strings
            Directories containing the JS files to be analysed.
        - js_dirs_validate: list of strings
            2 JS dir (1 benign, 1 malicious) to select the features with chi2.
        - labels_validate: list of strings
            Labels of the 2 JS dir for the features selection process
        - labels_d: list of strings
            Indicates the label's name of the directories considered: either benign or malicious.
        - model_dir: String
            Path to store the model that will be produced.
            Default value being the folder JS-Analysis/Classification/.
        - model_name: String
            Name of the model that will be produced.
            Default value being model.
        - print_score: Boolean
            Indicates whether to print or not the classifier's performance.
        - print_res: Boolean
            Indicates whether to print or not the classifier's predictions.
        - n: Integer
            Stands for the size of the sliding-window which goes through the units contained in the
            files to be analysed.
        - estimators: int
            Number of trees in the forest.
        - level: str
            Either 'tokens', 'ast', 'cfg', 'pdg', or 'pdg-dfg' depending on the units you want
            to extract.
        - features_choice: str
            Either 'ngrams' or 'value' depending on the features you want.
        - analysis_path: str
            Folder to store the features' analysis results in.
        Default values are the ones given in the command lines or in the
        ArgumentParser object (function parsingCommands()).
    """

    if js_dirs is None:
        logging.error(
            'Please, indicate at least 2 directories (--d option), at least one benign '
            'and one malicious (--l option to pass the corresponding labels).\nGot 0 '
            'directories with the following labels: %s', labels_d)

    elif len(js_dirs) < 2 or labels_d is None\
            or 'benign' not in labels_d or 'malicious' not in labels_d:
        logging.error(
            'Please, indicate at least 2 directories (--d option), at least one benign '
            'and one malicious (--l option to pass the corresponding labels).\nGot %s '
            'directories with the following labels: %s', str(len(js_dirs)),
            labels_d)

    elif js_dirs is not None and (labels_d is None
                                  or len(js_dirs) != len(labels_d)):
        logging.error(
            'Please, indicate as many directory labels (--l option) as the number %s of '
            'directories to analyze', str(len(js_dirs)))

    elif js_dirs_validate is None:
        logging.error(
            'Please, indicate the 2 JS directories (--vd option) '
            'with corresponding labels (--vl option, 1 benign and 1 malicious) '
            'for the features validation process')

    elif len(js_dirs_validate) != 2 or labels_validate is None\
            or 'benign' not in labels_validate or 'malicious' not in labels_validate:
        logging.error(
            'Please, indicate the 2 JS directories (--vd option) '
            'with corresponding labels (--vl option, 1 benign and 1 malicious) '
            'for the features validation process.\nGot %s directories with following '
            'labels %s', str(len(js_dirs_validate)), labels_validate)

    elif utility.check_params(level, features_choice) == 0:
        return

    else:
        analysis_path = os.path.join(analysis_path, 'Features')
        utility.check_folder_exists(analysis_path)

        features2int_dict_path = os.path.join(
            analysis_path, features_choice[0],
            level[0] + '_selected_features_99')

        features_preselection.handle_features_all(js_dirs, labels_d, level[0],
                                                  features_choice[0],
                                                  analysis_path, n)
        features_selection.store_features_all(js_dirs_validate,
                                              labels_validate, level[0],
                                              features_choice[0],
                                              analysis_path, n)

        names, attributes, labels = static_analysis.main_analysis\
            (js_dirs=js_dirs, labels_dirs=labels_d, js_files=None, labels_files=None,
             n=n, level=level[0], features_choice=features_choice[0],
             features2int_dict_path=features2int_dict_path)

        if names:
            # Uncomment to save the analysis results in pickle objects.
            """
            utility.save_analysis_results(os.path.join(model_dir[0], "Analysis-n" + str(n) + "-dict"
                                                       + str(dict_not_hash)),
                                          names, attributes, labels)
            """

            classify(names,
                     labels,
                     attributes,
                     model_dir=model_dir[0],
                     model_name=model_name[0],
                     print_score=print_score[0],
                     print_res=print_res[0],
                     estimators=estimators[0])

        else:
            logging.warning('No valid JS file found for the analysis')