Esempio n. 1
0
def search(goal):
    """
    >>> search(6)
    13
    >>> search(7)
    56003
    """
    already_searched = set()
    for prime in primes():
        if prime in already_searched:
            continue
        positions_list = list(position_combinations(prime))
        for positions in positions_list:
            digits = list(digits_of(prime))
            family = set()
            for digit in range(10):
                if 0 in positions and digit == 0:
                    continue
                for pos in positions:
                    digits[pos] = digit
                number = from_digits(digits)
                if is_prime(number):
                    already_searched.add(number)
                    family.add(number)
            if len(family) >= goal:
                return min(family)
Esempio n. 2
0
def odd_composites():
    """
    >>> list(up_to(33, odd_composites()))
    [9, 15, 21, 25, 27, 33]
    """
    for odd in islice(count(3), None, None, 2):
        if not is_prime(odd):
            yield odd
Esempio n. 3
0
def prime_sqrt(n):
    """
    >>> prime_sqrt(4)
    (2, 2)
    >>> prime_sqrt(1000)
    (31, 37)
    """
    if n < 4:
        raise ValueError(n)
    s = math.sqrt(n)
    lps = math.floor(s)
    while not is_prime(lps):
        lps -= 1
    ups = math.ceil(s)
    while not is_prime(ups):
        ups += 1
    return (lps, ups)
Esempio n. 4
0
def prime_sequence_length(coefficients):
    """
    Find the length of the prime sequence generated by a polynomial.

    >>> prime_sequence_length((1, 1, 41))
    40
    >>> prime_sequence_length((1, -79, 1601))
    80
    """
    for n in itertools.count():
        if not is_prime(eval_polynomial(coefficients, n)):
            return n
Esempio n. 5
0
def prime_sequence_sums(limit):
    prime_list = []
    for p in primes():
        prime_list.append(p)
        if sum(prime_list) >= limit:
            return
        for i in range(len(prime_list)):
            sequence = prime_list[i:]
            if len(sequence) <= 1:
                continue
            s = sum(sequence)
            if is_prime(s):
                yield sequence, s
Esempio n. 6
0
def RSAKeyGeneration(socket, option): 
    while(True):
        p = secrets.randbits(256)
        if(util.is_prime(p)):
            break
    while(True):
        q = secrets.randbits(256)
        if(util.is_prime(q) and p!=q):
            break
    N = p*q
    carmichael = util.lcm(p-1,q-1)
    e = 65537
    d = float(1+carmichael)/e
    k = 1
    while(not d.is_integer()):
        d = float(1+k*carmichael)/e
        k += 1
    d = int(d)
    socket.send(str(e).encode())
    e = int(socket.recv(1024).decode())
    socket.send(str(N).encode())
    n = int(socket.recv(1024).decode())
    return d, n, e, N
Esempio n. 7
0
from utility import is_prime

n = abs(int(input('Enter a number: ')))
print('The number is prime!' if is_prime(n) else 'The number is not prime!')
Esempio n. 8
0
import itertools
from utility import digits_of, from_digits, is_prime

# We only need to search 4 and 7 digit pandigital numbers for primality. For
# other sizes of numbers, their digital roots show that they are always
# divisible by 3 (http://en.wikipedia.org/wiki/Digital_root).
# 1+2+3+4+5+6+7+8+9 = 45, 4+5 = 9
# 1+2+3+4+5+6+7+8 = 36, 3+6 = 9
# etc.

def digit_permutations(n):
    for digits in itertools.permutations(digits_of(n)):
        yield from_digits(digits)

print(max(p for p in digit_permutations(1234567) if is_prime(p)))
Esempio n. 9
0
    41 20  7  8  9 10 27
    42 21 22 23 24 25 26
    43 44 45 46 47 48 49

    >>> import itertools
    >>> list(itertools.islice(spiral_corners(), 4))
    [(1,), (3, 5, 7, 9), (13, 17, 21, 25), (31, 37, 43, 49)]
    """
    size = 0
    n = 1
    yield (n,)
    while True:
        size += 2
        nums = []
        for _ in range(4):
            n += size
            nums.append(n)
        yield tuple(nums)

if __name__ == '__main__':
    total = 0
    prime_count = 0
    for i, nums in enumerate(spiral_corners()):
        for n in nums:
            total += 1
            if is_prime(n):
                prime_count += 1
        if i > 0 and prime_count * 10 < total:
            print(2 * i + 1)
            break