def UMMP_time_dummy(): size = [20, 30, 40] times = [] for s in size: ufuncs = utility.read_ufuncs("../data/ufuncs/uf_" + str(s * (s - 1)) + ".txt") scaled_ufuncs = utility.scale_ufuncs(ufuncs) pl_mat, cms, c = topo.read_data("../data/topologies/waxman_" + str(s) + "_3_" + str(s * (s - 1)) + ".txt") new_c = [10000.0 for i in range(len(c))] c = new_c pl_mat = np.matrix(pl_mat) start_time = time.time() cm_alloc, paths_alloc, useful_when_error = UMMP.max_min_program( pl_mat, cms, c, scaled_ufuncs, len(cms)) tot_time = time.time() - start_time times.append(tot_time) print(times)
def congestion_time(): caps = [4000.0, 6000.0, 8000.0, 10000.0] times = [] for cap in caps: time_sum = 0 for i in range(1, 11): ufuncs = utility.read_ufuncs("../data/ufuncs/uf_870" + "_v" + str(i) + ".txt") scaled_ufuncs = utility.scale_ufuncs(ufuncs) pl_mat, cms, c = topo.read_data( "../data/topologies/waxman_30_3_870.txt") new_c = [cap for i in range(len(c))] c = new_c pl_mat = np.matrix(pl_mat) start_time = time.time() #cm_alloc, paths_alloc, useful_when_error = UMMP.max_min_program( # pl_mat, cms, c, scaled_ufuncs, len(cms)) #initial_splits=UIEWF.exp_congestion_decay_splits(cms,pl_mat) #cm_alloc,diffs=UIEWF.Util_IEWF( # pl_mat,cms,c,initial_splits,scaled_ufuncs,it=100,th=0.03) cm_alloc, diffs = Hybrid.hybrid_alloc(pl_mat, cms, c, scaled_ufuncs, it=100, th=0.03, k=0.5 * len(cms)) tot_time = time.time() - start_time time_sum += tot_time avg_time = time_sum / 10 times.append(avg_time) print(times)
def performance_waxman(): plt.rcParams['font.family'] = 'serif' plt.rcParams['font.size'] = 18 plt.rcParams['font.weight'] = 'bold' plt.rcParams['axes.labelweight'] = 'bold' plt.rcParams['axes.labelsize'] = 18 fig, ax = plt.subplots() fig.subplots_adjust(left=0.16, top=0.995, bottom=0.13, right=0.995) pl_mat, cms, c = topo.read_data('../data/topologies/waxman_30_3_870.txt') ufuncs = utility.read_ufuncs("../data/ufuncs/uf_870_v4.txt") scaled_ufuncs = utility.scale_ufuncs(ufuncs) new_c = [4000.0 for i in range(len(c))] c = new_c pl_mat = np.matrix(pl_mat) x = [i for i in range(0, 870)] cm_alloc, paths_alloc, useful_when_error = UMMP.max_min_program( pl_mat, cms, c, scaled_ufuncs, len(cms)) util_alloc = utility.flow2util(ufuncs, cm_alloc) ax.plot(x, sorted(util_alloc), label='Optimal', linestyle='solid') #initial_splits=UIEWF.exp_congestion_decay_splits(cms,pl_mat) #cm_alloc,diffs=UIEWF.Util_IEWF(pl_mat,cms,c,initial_splits,scaled_ufuncs,it=20,th=0.001) #util_alloc=utility.flow2util(ufuncs,cm_alloc) #ax.plot(x,sorted(util_alloc),label='U-IEWF',linestyle='dotted') #cm_alloc,diffs=Hybrid.hybrid_alloc(pl_mat,cms,c,scaled_ufuncs,it=20,th=0.001,k=100) #util_alloc=utility.flow2util(ufuncs,cm_alloc) #ax.plot(x,sorted(util_alloc),label='Hybrid-100',linestyle='dashed') ax.set_xticks(np.arange(0, 871, step=100)) ax.set_ylabel('Utility') ax.set_xlabel('Commodity Index') #ax.grid(ls='--') ax.legend() plt.show()
def dummy(): # running_time() pl_mat, cms, c = topo.read_data('../data/topologies/waxman_30_2_870.txt') ufuncs = utility.read_ufuncs("../data/ufuncs/uf_870.txt") scaled_ufuncs = utility.scale_ufuncs(ufuncs) new_c = [10000.0 for i in range(len(c))] c = new_c pl_mat = np.matrix(pl_mat) start_time = time.time() cm_alloc, paths_alloc, useful_when_error = UMMP.max_min_program( pl_mat, cms, c, scaled_ufuncs, len(cms)) tot_time_1 = time.time() - start_time #print("UMMP total time is "+str(tot_time)) start_time = time.time() initial_splits = UIEWF.exp_congestion_decay_splits(cms, pl_mat) cm_alloc, diffs = UIEWF.Util_IEWF(pl_mat, cms, c, initial_splits, scaled_ufuncs, it=10, th=0.03) tot_time_2 = time.time() - start_time #print("UIEWF total time is "+str(tot_time)) start_time = time.time() cm_alloc, diffs = Hybrid.hybrid_alloc(pl_mat, cms, c, scaled_ufuncs, it=10, th=0.03, k=500) tot_time_3 = time.time() - start_time #print("Hybrid total time is "+str(tot_time)) print("UMMP total time is " + str(tot_time_1)) print("UIEWF total time is " + str(tot_time_2)) print("Hybrid total time is " + str(tot_time_3))
def UIEWF_time(): size = [20, 30, 40] times = [] for s in size: time_sum = 0 for i in range(1, 11): ufuncs = utility.read_ufuncs("../data/ufuncs/uf_" + str(s * (s - 1)) + "_v" + str(i) + ".txt") scaled_ufuncs = utility.scale_ufuncs(ufuncs) pl_mat, cms, c = topo.read_data("../data/topologies/waxman_" + str(s) + "_3_" + str(s * (s - 1)) + ".txt") new_c = [10000.0 for i in range(len(c))] c = new_c pl_mat = np.matrix(pl_mat) start_time = time.time() initial_splits = UIEWF.exp_congestion_decay_splits(cms, pl_mat) cm_alloc, diffs = UIEWF.Util_IEWF(pl_mat, cms, c, initial_splits, scaled_ufuncs, it=100, th=0.03) tot_time = time.time() - start_time time_sum += tot_time avg_time = time_sum / 10 times.append(avg_time) print(times)
def Hybrid_time(): size = [40] times = [] for s in size: time_sum = 0 for i in range(1, 11): ufuncs = utility.read_ufuncs("../data/ufuncs/uf_" + str(s * (s - 1)) + "_v" + str(i) + ".txt") scaled_ufuncs = utility.scale_ufuncs(ufuncs) pl_mat, cms, c = topo.read_data("../data/topologies/waxman_" + str(s) + "_3_" + str(s * (s - 1)) + ".txt") new_c = [10000.0 for i in range(len(c))] c = new_c pl_mat = np.matrix(pl_mat) start_time = time.time() cm_alloc, diffs = Hybrid.hybrid_alloc(pl_mat, cms, c, scaled_ufuncs, it=100, th=0.03, k=0.2 * len(cms)) tot_time = time.time() - start_time time_sum += tot_time avg_time = time_sum / 10 times.append(avg_time) print(times)
def abilene_time(): time_sum = 0 for i in range(1, 11): ufuncs = utility.read_ufuncs("../data/ufuncs/uf_110" + "_v" + str(i) + ".txt") scaled_ufuncs = utility.scale_ufuncs(ufuncs) pl_mat, cms, c = topo.read_data("../data/topologies/abilene_2_110.txt") new_c = [10000.0 for i in range(len(c))] c = new_c pl_mat = np.matrix(pl_mat) start_time = time.time() #cm_alloc, paths_alloc, useful_when_error = UMMP.max_min_program( # pl_mat, cms, c, scaled_ufuncs, len(cms)) #initial_splits=UIEWF.exp_congestion_decay_splits(cms,pl_mat) #cm_alloc,diffs=UIEWF.Util_IEWF( # pl_mat,cms,c,initial_splits,scaled_ufuncs,it=100,th=0.03) cm_alloc, diffs = Hybrid.hybrid_alloc(pl_mat, cms, c, scaled_ufuncs, it=100, th=0.03, k=0.2 * len(cms)) tot_time = time.time() - start_time time_sum += tot_time avg_time = time_sum / 10 print("average time is") print(avg_time)
def convergence_waxman_size(): plt.rcParams['font.family'] = 'serif' plt.rcParams['font.size'] = 18 plt.rcParams['font.weight'] = 'bold' plt.rcParams['axes.labelweight'] = 'bold' plt.rcParams['axes.labelsize'] = 18 fig, ax = plt.subplots() fig.subplots_adjust(left=0.16, top=0.995, bottom=0.13, right=0.995) size = [20, 30] markers = ['x', 'v', '.', '^'] x = [i for i in range(2, 21)] for i in range(len(size)): s = size[i] ufuncs = utility.read_ufuncs("../data/ufuncs/uf_" + str(s * (s - 1)) + ".txt") pl_mat, cms, c = topo.read_data("../data/topologies/waxman_" + str(s) + "_3_" + str(s * (s - 1)) + ".txt") ufuncs = utility.scale_ufuncs(ufuncs) new_c = [10000.0 for i in range(len(c))] c = new_c pl_mat = np.matrix(pl_mat) initial_splits = UIEWF.exp_decay_splits(cms, pl_mat) cm_alloc, diffs = UIEWF.Util_IEWF(pl_mat, cms, c, initial_splits, ufuncs, it=20, th=0.00001) ax.plot(x, diffs, label='len_decay', marker=markers[i], linestyle='dotted') initial_splits = UIEWF.exp_congestion_decay_splits(cms, pl_mat) cm_alloc, diffs = UIEWF.Util_IEWF(pl_mat, cms, c, initial_splits, ufuncs, it=20, th=0.00001) ax.plot(x, diffs, label="waxman-" + str(s), marker=markers[i], linestyle='solid') ax.set_xticks(np.arange(2, 21, step=2)) ax.set_ylabel('Difference') ax.set_xlabel('Iteration number') ax.grid(ls='--') ax.legend() plt.show()
def convergence_abilene(): plt.rcParams['font.family'] = 'serif' plt.rcParams['font.size'] = 18 plt.rcParams['font.weight'] = 'bold' plt.rcParams['axes.labelweight'] = 'bold' plt.rcParams['axes.labelsize'] = 18 fig, ax = plt.subplots() fig.subplots_adjust(left=0.16, top=0.995, bottom=0.13, right=0.995) ufuncs = utility.read_ufuncs("../data/ufuncs/uf_110.txt") pl_mat, cms, c = topo.read_data('../data/topologies/abilene_2_110.txt') ufuncs = utility.scale_ufuncs(ufuncs) new_c = [10000.0 for i in range(len(c))] c = new_c pl_mat = np.matrix(pl_mat) initial_splits = UIEWF.uniform_splits(cms) cm_alloc, diffs = UIEWF.Util_IEWF(pl_mat, cms, c, initial_splits, ufuncs, it=20, th=0.00001) x = [i for i in range(21)][2:] ax.plot(x, diffs, label='uniform', marker='x', linestyle='solid') initial_splits = UIEWF.random_splits(cms) cm_alloc, diffs = UIEWF.Util_IEWF(pl_mat, cms, c, initial_splits, ufuncs, it=20, th=0.00001) ax.plot(x, diffs, label='random', marker='v', linestyle='solid') initial_splits = UIEWF.exp_decay_splits(cms, pl_mat) cm_alloc, diffs = UIEWF.Util_IEWF(pl_mat, cms, c, initial_splits, ufuncs, it=20, th=0.00001) ax.plot(x, diffs, label='len_decay', marker='.', linestyle='solid') initial_splits = UIEWF.exp_congestion_decay_splits(cms, pl_mat) cm_alloc, diffs = UIEWF.Util_IEWF(pl_mat, cms, c, initial_splits, ufuncs, it=20, th=0.00001) ax.plot(x, diffs, label='congestion_decay', marker='^', linestyle='solid') ax.set_xticks(np.arange(2, 21, step=2)) ax.set_yticks(np.arange(0.0, 0.13, step=0.02)) ax.set_ylabel('Difference') ax.set_xlabel('Iteration number') ax.grid(ls='--') ax.legend() plt.show()