def __getitem__(self, idx): #print("Get item: ",str(idx) + self.image_paths[idx]) #print("Label Length",len(self.label)) #print("Test Length",len(self.test)) self.printedItems = self.printedItems + 1 if self.loadLink: image_name = self.image_paths[idx] image = imageio.imread(os.path.join(image_name)) image = to_normalized_range(image) image = transform.resize(image, (self.IMAGE_SIZE, self.IMAGE_SIZE), mode='symmetric', preserve_range=True) #Uncomment and comment the reshape, #,if every picture should be done in color mode: Remember to change the dimension in the network from 1 to 3! #if len(image.shape) == 2: # image = color.gray2rgb(image) #image = image.transpose((2, 0, 1)) image = image.reshape((1, self.IMAGE_SIZE, self.IMAGE_SIZE)) image = torch.tensor(image.astype(np.float32)) if self.label: label_image = self.label[idx] label_image = torch.tensor(label_image, dtype=torch.float32) return image, label_image else: label_image = idx #label_image = torch.tensor(label_image, dtype=torch.float32) return image, label_image else: # Code for CIL Project if (self.category == 'query'): return dataset_img[idx] else: return dataset_img[idx], label[idx] """
def __getitem__(self, idx): image_name = self.image_names[idx] image = imageio.imread(os.path.join(self.dataset_path, image_name)) image = image.transpose((2, 0, 1)) image = torch.tensor(image.astype(np.float32)) image = to_normalized_range(image) age = self.ages[idx] age = torch.tensor(age, dtype=torch.float32) return image, age
def __getitem__(self, index): image_name = self.image_names[index] image = np.load( os.path.join(self.dataset_path, image_name.replace('.jpg', '.npy'))) image = torch.tensor(image.astype(np.float32)) image = to_normalized_range(image) angle = self.angles[index] angle = torch.tensor(angle, dtype=torch.float32) return image, angle