from utility import Data, evaluate import knn_models import time if __name__ == "__main__": start_time = time.time() data = Data() data.pca_transform() acc = [] for X_train, X_test, y_train, y_test in data.load(): knn = knn_models.SklearnkNNWithBallTree(5, X_train, y_train, 'inverse proportional') acc.append(knn.score(X_test, y_test)) end_time = time.time() evaluate(acc) print('total time: %.4fs' % (end_time - start_time))
from utility import Data, evaluate import svm_models import time if __name__ == "__main__": start_time = time.time() data = Data() data.pca_transform(0.9) acc = [] for X_train, X_test, y_train, y_test in data.load(): svm = svm_models.SklearnLinearSVC(X_train, y_train) acc.append(svm.score(X_test, y_test)) end_time = time.time() evaluate(acc) print('total time: %.4fs' % (end_time-start_time))