def test_neural_network_basic(): runner = Runner('model/experiment/output/neural_network_basic', load_sample_data_frame(), 'violation', neural_network_basic, None) runner.run_classification_experiment(sample=sample, multiclass=True, record_predict_proba=True)
def test_gaussian_naive_bayes_basic(): runner = Runner('model/experiment/output/complement_naive_bayes_basic', load_sample_data_frame(), 'violation', gaussian_naive_bayes_basic, None) runner.run_classification_experiment(sample=sample, multiclass=True, record_predict_proba=True)
def build_xgboost_model(): runner = Runner('model/output/xgboost_model', load_data_frame(), 'violation', xgboost_pipeline, None) runner.run_classification_experiment(sample=sample, test_size=0.2, multiclass=True, record_predict_proba=True) joblib.dump(xgboost_pipeline, 'model/output/xgboost_model.joblib')
def test_lightgbm_basic(): runner = Runner('model/experiment/output/lightgbm_basic', load_sample_data_frame(), 'violation', lightgbm_basic, hyper_parameters) runner.run_classification_search_experiment('neg_log_loss', sample=sample, n_iter=iterations, multiclass=True, record_predict_proba=True)
def run_algorithm(self): try: max_gen = int(self.max_gen.text()) algorithm = HillClimbing(max_gen) val, t_time = Runner.run_algorithm(algorithm, self.title) self.print_results(val, t_time) except ValueError as error: QMessageBox.warning(self, 'Value error', 'Invalid input:' + str(error))
def run_algorithm(self): try: max_gen = int(self.max_gen.text()) pop_size = int(self.pop_size.text()) num_children = int(self.num_children.text()) algorithm = EvolutionStrat(max_gen, pop_size, num_children) val, t_time = Runner.run_algorithm(algorithm, self.title) self.print_results(val, t_time) except ValueError as error: QMessageBox.warning(self, 'Value error', 'Invalid input:' + str(error))
def run_algorithm(self): try: max_gen = int(self.max_gen.text()) pop_size = int(self.pop_size.text()) clone_f = float(self.clone_f.text()) num_rand = int(self.num_rand.text()) algorithm = ClonalSelection(max_gen, pop_size, clone_f, num_rand) val, t_time = Runner.run_algorithm(algorithm, self.title) self.print_results(val, t_time) except ValueError as error: QMessageBox.warning(self, 'Value error', 'Invalid input:' + str(error))
def run_algorithm(self): try: pop_size = int(self.pop_size.text()) best_p = int(self.best_pop.text()) max_gen = int(self.max_gen.text()) p_m = float(self.p_m.text()) algorithm = Genetic(pop_size, best_p, max_gen, p_m) val, t_time = Runner.run_algorithm(algorithm, self.title) self.print_results(val, t_time) except ValueError as error: QMessageBox.warning(self, 'Value error', 'Invalid input:'+str(error))
def run_algorithm(self): try: max_gen = int(self.max_gen.text()) pop_size = int(self.pop_size.text()) weight_f = float(self.weight_f.text()) cross_r = float(self.cross_r.text()) algorithm = DiffEvolution(max_gen, pop_size, weight_f, cross_r) val, t_time = Runner.run_algorithm(algorithm, self.title) self.print_results(val, t_time) except ValueError as error: QMessageBox.warning(self, 'Value error', 'Invalid input:'+str(error))
def run_algorithm(self): try: max_gen = int(self.max_gen.text()) num_samples = int(self.num_samples.text()) num_update = int(self.num_update.text()) learning_r = float(self.learning_r.text()) algorithm = CrossEntropy(max_gen, num_samples, num_update, learning_r) val, t_time = Runner.run_algorithm(algorithm, self.title) self.print_results(val, t_time) except ValueError as error: QMessageBox.warning(self, 'Value error', 'Invalid input:' + str(error))
def run_algorithm(self): try: max_gen = int(self.max_gen.text()) mem_size = int(self.mem_size.text()) consid_r = float(self.consid_r.text()) adjust_r = float(self.adjust_r.text()) rang = float(self.rang.text()) algorithm = Harmony(max_gen, mem_size, consid_r, adjust_r, rang) val, t_time = Runner.run_algorithm(algorithm, self.title) self.print_results(val, t_time) except ValueError as error: QMessageBox.warning(self, 'Value error', 'Invalid input:' + str(error))
def run_algorithm(self): try: max_gen = int(self.max_gen.text()) pop_size = int(self.pop_size.text()) num_clones = int(self.num_clones.text()) beta = int(self.beta.text()) num_rand = int(self.num_rand.text()) algorithm = ImmuneNetwork(max_gen, pop_size, num_clones, beta, num_rand) val, t_time = Runner.run_algorithm(algorithm, self.title) self.print_results(val, t_time) except ValueError as error: QMessageBox.warning(self, 'Value error', 'Invalid input:' + str(error))
def run_algorithm(self): try: max_gen = int(self.max_gen.text()) pop_size = int(self.pop_size.text()) weight_f = float(self.weight_f.text()) cross_r = float(self.cross_r.text()) num_threads = int(self.num_threads.text()) algorithm = DiffEvoAlgorithm(pop_size, max_gen, weight_f, cross_r, num_threads) bests, t_time = Runner.run_algorithm_p(algorithm, self.title) self.print_results_p(bests, t_time) except ValueError as error: QMessageBox.warning(self, 'Value error', 'Invalid input:' + str(error))
def run_algorithm(self): try: pop_size = int(self.pop_size.text()) best_p = int(self.best_pop.text()) max_gen = int(self.max_gen.text()) p_m = float(self.p_m.text()) num_threads = int(self.num_threads.text()) algorithm = GenParallelAlgorithm(pop_size, best_p, max_gen, p_m, num_threads) bests, t_time = Runner.run_algorithm_p(algorithm, self.title) self.print_results_p(bests, t_time) except ValueError as error: QMessageBox.warning(self, 'Value error', 'Invalid input:' + str(error))
def run_algorithm(self): try: max_gen = int(self.max_gen.text()) pop_size = int(self.pop_size.text()) p_cross = float(self.p_cross.text()) max_local_gens = int(self.max_local_gens.text()) p_mut = float(self.p_mut.text()) p_local = float(self.p_local.text()) algorithm = Memetic(max_gen, pop_size, p_cross, p_mut, max_local_gens, p_local) val, t_time = Runner.run_algorithm(algorithm, self.title) self.print_results(val, t_time) except ValueError as error: QMessageBox.warning(self, 'Value error', 'Invalid input:' + str(error))
def build_xgboost_model(): runner = Runner('model/output/xgboost_basic', load_clean_data_frame(), 'arrest', xgboost_pipeline, hyper_parameters) runner.run_classification_search_experiment('roc_auc', sample=sample, n_iter=iterations, record_predict_proba=True) joblib.dump(runner.trained_estimator, 'model/output/xgboost_basic.joblib') runner = Runner('model/output/xgboost_basic_fs', load_clean_data_frame(), 'arrest', xgboost_pipeline_fs, hyper_parameters) runner.run_classification_search_experiment('roc_auc', sample=sample, n_iter=iterations, record_predict_proba=True) joblib.dump(runner.trained_estimator, 'model/output/xgboost_basic_fs.joblib')
def run_algorithm(self): try: max_gen = int(self.max_gen.text()) init_f = float(self.init_f.text()) s_factor = float(self.s_factor.text()) l_factor = float(self.l_factor.text()) iter_mult = int(self.iter_mult.text()) max_no_impr = int(self.max_no_impr.text()) algorithm = AdaptativeRandomS(max_gen, init_f, s_factor, l_factor, iter_mult, max_no_impr) val, t_time = Runner.run_algorithm(algorithm, self.title) self.print_results(val, t_time) except ValueError as error: QMessageBox.warning(self, 'Value error', 'Invalid input:' + str(error))
def build_sgd_huber_loss(): runner = Runner( 'model/output/sgd_huber_loss_over_sampled', load_clean_data_frame(), 'arrest', sgd ) runner.run_classification_experiment( sample=sample, record_predict_proba=True, transformer=binned_geo_one_hot_data_mapper, sampling=SMOTE(), fit_increment=fit_increment, max_iters=max_iters, n_jobs=1, cv=None ) joblib.dump( pipeline, 'model/output/sgd_huber_loss_over_sampled.joblib' ) runner = Runner( 'model/output/sgd_huber_loss_over_sampled_fs', load_clean_data_frame(), 'arrest', sgd_fs ) runner.run_classification_experiment( sample=sample, record_predict_proba=True, transformer=mapper, sampling=SMOTE(), fit_increment=fit_increment, max_iters=max_iters, n_jobs=1, cv=None ) joblib.dump( pipeline_fs, 'model/output/sgd_huber_loss_over_sampled_fs.joblib' )
def build_neural_network(): runner = Runner('model/output/neural_network_basic', load_clean_data_frame(), 'arrest', nn) runner.run_classification_experiment( sample=sample, record_predict_proba=True, transformer=binned_geo_one_hot_data_mapper, fit_increment=fit_increment, max_iters=max_iters, cv=None, n_jobs=1) joblib.dump(pipeline, 'model/output/neural_network_basic.joblib') runner = Runner('model/output/neural_network_basic_fs', load_clean_data_frame(), 'arrest', nn_fs) runner.run_classification_experiment(sample=sample, record_predict_proba=True, transformer=mapper, fit_increment=fit_increment, max_iters=max_iters, cv=None, n_jobs=1) joblib.dump(pipeline_fs, 'model/output/neural_network_basic_fs.joblib')
def test_decision_tree(): runner = Runner('model/experiment/output/decision_tree_basic', load_clean_sample_data_frame(), 'arrest', decision_tree_basic, hyper_parameters=hyper_parameters) runner.run_classification_search_experiment('roc_auc', sample=sample, n_iter=iterations, record_predict_proba=True) runner = Runner('model/experiment/output/decision_tree_under_sampled', load_clean_sample_data_frame(), 'arrest', decision_tree_basic, hyper_parameters=hyper_parameters) runner.run_classification_search_experiment('roc_auc', sample=sample, n_iter=iterations, record_predict_proba=True, sampling=RandomUnderSampler()) runner = Runner('model/experiment/output/decision_tree_over_sampled', load_clean_sample_data_frame(), 'arrest', decision_tree_basic, hyper_parameters=hyper_parameters) runner.run_classification_search_experiment('roc_auc', sample=sample, n_iter=iterations, record_predict_proba=True, sampling=SMOTE()) runner = Runner('model/experiment/output/decision_tree_combine_sampled', load_clean_sample_data_frame(), 'arrest', decision_tree_basic, hyper_parameters=hyper_parameters) runner.run_classification_search_experiment('roc_auc', sample=sample, n_iter=iterations, record_predict_proba=True, sampling=SMOTEENN())
def test_gaussian_naive_bayes(): runner = Runner('model/experiment/output/gaussian_naive_bayes_basic', load_clean_sample_data_frame(), 'arrest', GaussianNB()) runner.run_classification_experiment( sample=sample, record_predict_proba=True, transformer=binned_geo_one_hot_data_mapper, fit_increment=fit_increment, n_jobs=1) runner = Runner( 'model/experiment/output/gaussian_naive_bayes_under_sampled', load_clean_sample_data_frame(), 'arrest', GaussianNB()) runner.run_classification_experiment( sample=sample, record_predict_proba=True, transformer=binned_geo_one_hot_data_mapper, fit_increment=fit_increment, n_jobs=1, sampling=RandomUnderSampler()) runner = Runner( 'model/experiment/output/gaussian_naive_bayes_over_sampled', load_clean_sample_data_frame(), 'arrest', GaussianNB()) runner.run_classification_experiment( sample=sample, record_predict_proba=True, transformer=binned_geo_one_hot_data_mapper, fit_increment=fit_increment, n_jobs=1, sampling=SMOTE()) runner = Runner( 'model/experiment/output/gaussian_naive_bayes_combine_sampled', load_clean_sample_data_frame(), 'arrest', GaussianNB()) runner.run_classification_experiment( sample=sample, record_predict_proba=True, transformer=binned_geo_one_hot_data_mapper, fit_increment=fit_increment, n_jobs=1, sampling=SMOTEENN())
def test_neural_network(): runner = Runner( 'model/experiment/output/neural_network_basic', load_clean_sample_data_frame(), 'arrest', MLPClassifier(hidden_layer_sizes=( 750, 125, ), verbose=True)) runner.run_classification_experiment( sample=sample, record_predict_proba=True, transformer=binned_geo_one_hot_data_mapper, fit_increment=fit_increment, max_iters=max_iters, n_jobs=1) runner = Runner( 'model/experiment/output/neural_network_under_sampled', load_clean_sample_data_frame(), 'arrest', MLPClassifier(hidden_layer_sizes=( 750, 125, ), verbose=True)) runner.run_classification_experiment( sample=sample, record_predict_proba=True, transformer=binned_geo_one_hot_data_mapper, fit_increment=fit_increment, max_iters=max_iters, n_jobs=1, sampling=RandomUnderSampler()) runner = Runner( 'model/experiment/output/neural_network_over_sampled', load_clean_sample_data_frame(), 'arrest', MLPClassifier(hidden_layer_sizes=( 750, 125, ), verbose=True)) runner.run_classification_experiment( sample=sample, record_predict_proba=True, transformer=binned_geo_one_hot_data_mapper, fit_increment=fit_increment, max_iters=max_iters, n_jobs=1, sampling=SMOTE()) runner = Runner( 'model/experiment/output/neural_network_combine_sampled', load_clean_sample_data_frame(), 'arrest', MLPClassifier(hidden_layer_sizes=( 750, 125, ), verbose=True)) runner.run_classification_experiment( sample=sample, record_predict_proba=True, transformer=binned_geo_one_hot_data_mapper, fit_increment=fit_increment, max_iters=max_iters, n_jobs=1, sampling=SMOTEENN())
def test_sgd_log_loss(): runner = Runner('model/experiment/output/sgd_log_loss_basic', load_clean_sample_data_frame(), 'arrest', SGDClassifier(loss='log')) runner.run_classification_experiment( sample=sample, record_predict_proba=True, transformer=binned_geo_one_hot_data_mapper, fit_increment=fit_increment, max_iters=max_iters, n_jobs=1) runner = Runner('model/experiment/output/sgd_log_loss_under_sampled', load_clean_sample_data_frame(), 'arrest', SGDClassifier(loss='log')) runner.run_classification_experiment( sample=sample, record_predict_proba=True, transformer=binned_geo_one_hot_data_mapper, fit_increment=fit_increment, max_iters=max_iters, n_jobs=1, sampling=RandomUnderSampler()) runner = Runner('model/experiment/output/sgd_log_loss_over_sampled', load_clean_sample_data_frame(), 'arrest', SGDClassifier(loss='log')) runner.run_classification_experiment( sample=sample, record_predict_proba=True, transformer=binned_geo_one_hot_data_mapper, fit_increment=fit_increment, max_iters=max_iters, n_jobs=1, sampling=SMOTE()) runner = Runner('model/experiment/output/sgd_log_loss_combine_sampled', load_clean_sample_data_frame(), 'arrest', SGDClassifier(loss='log')) runner.run_classification_experiment( sample=sample, record_predict_proba=True, transformer=binned_geo_one_hot_data_mapper, fit_increment=fit_increment, max_iters=max_iters, n_jobs=1, sampling=SMOTEENN())