Esempio n. 1
0
def get_oof(clfs, raw_texts, raw_labels, test_data, word2index, attr_dict):
    NFOLDS = len(clfs)
    n_train = len(raw_texts)
    n_test = len(test_data.sentences)
    class_num = 10
    oof_train = np.zeros((n_train, class_num))
    oof_train_y = np.zeros((n_train, class_num))
    oof_test = np.zeros((n_test, class_num))
    oof_test_skf = np.zeros((NFOLDS, n_test, class_num))

    kf = 0
    for (train_index,
         test_index), checkpoint in zip(kfold_split(n_train, NFOLDS), clfs):
        print(checkpoint)
        clf = torch.load(checkpoint)
        kf += 1
        print("FOLD:", kf)
        print("TRAIN:", str(len(train_index)), "TEST:", str(len(test_index)))
        # train_index, test_index = train_index.tolist(), test_index.tolist()
        dev_texts, dev_labels = [raw_texts[i] for i in test_index
                                 ], [raw_labels[i] for i in test_index]
        dev_data = Data((dev_texts, dev_labels), word2index, attr_dict, args)
        if args.use_elmo != 0:
            dev_elmo = load_elmo(dev_texts)
            dev_data.add_feature(dev_elmo)
        with torch.no_grad():
            dev_predict, oof_dev = train.predict_with_logit(
                clf, dev_data, args)
        pred_acc_p = score(dev_predict, dev_data.labels)
        print("[p:%.4f, r:%.4f, f:%.4f] acc:%.4f" %
              (pred_acc_p[0], pred_acc_p[1], pred_acc_p[2], pred_acc_p[3]))
        # label_prf = label_analysis(dev_predict, dev_data.labels)
        # for i in range(len(label_prf)):
        #     print("%s : [%.4f, %.4f, %.4f] %.4f" %
        #           (list(attr_dict.keys())[i], label_prf[i][0], label_prf[i][1], label_prf[i][2], label_prf[i][3]))
        oof_train[test_index] = oof_dev
        dev_y = [l[0].detach().numpy() for l in dev_data.labels]

        oof_train_y[test_index] = dev_y
        _, oof_test_skf[kf - 1, :, :] = train.predict_with_logit(
            clf, test_data, args)
    oof_test[:] = oof_test_skf.mean(axis=0)
    dir = os.path.dirname(clfs[0])
    if not os.path.exists(os.path.join(dir, 'npy')):
        os.mkdir(os.path.join(dir, 'npy'))
    print(dir)
    np.save(os.path.join(dir, 'npy', "oof_train"), oof_train)
    np.save(os.path.join(dir, 'npy', "oof_train_y"), oof_train_y)
    np.save(os.path.join(dir, 'npy', "oof_test"), oof_test)
    return oof_train, oof_train_y, oof_test
Esempio n. 2
0
    def train_from_data(self,
                        train_raw_data,
                        test_raw_data,
                        W,
                        word2index,
                        attr_dict,
                        args,
                        Fold=0):

        word_embed_dim = W.shape[1]
        hidden_size = args.n_hidden
        vocab_size = len(W)
        output_size = len(attr_dict)

        if args.model == 'LSTM':
            self.classifier = networks.LSTM(word_embed_dim, output_size,
                                            vocab_size, args)
        elif args.model == 'Fasttext':
            self.classifier = networks.Fasttext(word_embed_dim, output_size,
                                                vocab_size, args)
        elif args.model == 'Average_LSTM2':
            self.classifier = networks.Average_LSTM2(word_embed_dim,
                                                     output_size, vocab_size,
                                                     args)
        elif args.model == 'AttA3':
            self.classifier = networks.AttA3(word_embed_dim, output_size,
                                             vocab_size, args)
            aspect_e_l = []
            for a in attr_dict:
                # print(a)
                if a == '舒适性':
                    a = '舒适'
                a_e = torch.FloatTensor(W[word2index[a]])
                aspect_e_l.append(a_e)
            aspect_embeds = torch.cat(aspect_e_l, 0)
            # print(aspect_embeds)
            # print(attr_dict)
            self.classifier.AE.weight = torch.nn.Parameter(aspect_embeds)
        elif args.model == 'Binary_LSTM':
            self.classifier = networks.Binary_LSTM(word_embed_dim, output_size,
                                                   vocab_size, args)
        elif args.model == 'CNN':
            self.classifier = networks.CNN(word_embed_dim, output_size,
                                           vocab_size, args)
        elif args.model == 'Attn_LSTM':
            self.classifier = networks.Attn_LSTM(word_embed_dim, output_size,
                                                 vocab_size, args)

        train_elmo, test_elmo = [], []

        if args.use_elmo != 0:
            import h5py
            elmo_dict = h5py.File('../embedding/embeddings_elmo_ly-1.hdf5',
                                  'r')
            for s in train_raw_data[0]:
                sentence = '\t'.join(s)
                sentence = sentence.replace('.', '$period$')
                sentence = sentence.replace('/', '$backslash$')
                # print(sentence)
                embeddings = torch.from_numpy(np.asarray(elmo_dict[sentence]))
                train_elmo.append(embeddings)
            for s in test_raw_data[0]:
                sentence = '\t'.join(s)
                sentence = sentence.replace('.', '$period$')
                sentence = sentence.replace('/', '$backslash$')
                embeddings = torch.from_numpy(np.asarray(elmo_dict[sentence]))
                test_elmo.append(embeddings)
            elmo_dict.close()
            print("finish elmo")

        train_data = Data(train_raw_data, word2index, attr_dict, args)
        # if args.use_dev:
        #     dev_data = Data(args, dev_input_s, dev_input_t, dev_y_tensor)
        # else:
        #     dev_data = None
        test_data = Data(test_raw_data, word2index, attr_dict, args)
        if args.use_elmo != 0:
            train_data.add_feature(train_elmo)
            test_data.add_feature(test_elmo)
        best_dict, max_acc = train.train(self.classifier,
                                         train_data,
                                         test_data,
                                         test_data,
                                         attr_dict,
                                         W,
                                         args=args)
        best_model = "%s/checkpoint_%s_%.6f_%d.pt" % (
            args.check_dir, args.model, max_acc, Fold)
        if args.save != 0:
            torch.save(best_dict, best_model)
        pass
Esempio n. 3
0
def stacking():
    saved = True if args.saved != 0 else False
    f_train = "../data/train.txt"
    test_file = "../data/test.txt"
    test_texts = load_test_data(test_file)
    raw_texts, raw_labels = load_attr_data(filename=f_train)
    word2index = pickle.load(open("../data/vocabulary.pkl", 'rb'))

    f_dict = "../dataset/attribute.json"
    attr_list, attr_dict = parse_json(f_dict)

    paths = args.test_dir.split('#')
    models_files = []
    for path in paths:
        models_files.append([
            os.path.join(path, f) for f in os.listdir(path)
            if os.path.isfile(os.path.join(path, f))
        ])

    test_data = Data((test_texts, None), word2index)
    if args.use_elmo != 0:
        test_elmo = load_elmo(test_texts)
        test_data.add_feature(test_elmo)

    x_train = []
    y_train = []  # TODO replace
    x_test = []
    for dir, checkpoints_per_model in zip(paths, models_files):
        print(dir, checkpoints_per_model)
        if saved == 1 and os.path.isfile(
                os.path.join(dir, 'npy', "oof_train.npy")):
            oof_train, oof_train_y, oof_test = load_oof(dir)
        else:
            NFOLDS = len(checkpoints_per_model)
            print(NFOLDS)
            assert NFOLDS == args.folds
            clfs = [None for i in range(NFOLDS)]
            for cp in checkpoints_per_model:
                fold = int(cp.replace('_', '.').split('.')[-2])
                print(fold)
                clfs[fold - 1] = cp
            oof_train, oof_train_y, oof_test = get_oof(clfs, raw_texts,
                                                       raw_labels, test_data,
                                                       word2index, attr_dict)
        x_train.append(oof_train)
        if y_train == []:
            y_train = oof_train_y
        else:
            assert (y_train == oof_train_y).all()
        x_test.append(oof_test)
    x_train = np.stack(x_train, axis=2)
    x_test = np.stack(x_test, axis=2)

    print(x_train.shape)
    num_train = x_train.shape[0]
    num_test = x_test.shape[0]
    test_predict = []
    for c in range(x_train.shape[1]):
        x_train_c = x_train[:, c, :].reshape(num_train, -1)
        x_test_c = x_test[:, c, :].reshape(num_test, -1)
        meta_clf_c = LogisticRegression()
        y_train_c = y_train[:, c]
        meta_clf_c.fit(x_train_c, y_train_c)
        test_predict_c = meta_clf_c.predict_proba(x_test_c)[:, 1]
        test_predict.append(test_predict_c)

    test_predict = np.stack(test_predict, axis=1)
    print(test_predict.shape)
    fw = codecs.open("../data/test_predict_aspect_ensemble.txt",
                     'w',
                     encoding='utf-8')

    for prob in test_predict:
        attributes = []
        voted = [0 for a in range(len(attr_list))]

        for i in range(len(prob)):
            p = prob[i]
            # print(p)
            if p > args.threshold:
                voted[i] = 1
                # categories.append(attrC[i])
        if sum(voted) == 0:
            voted[prob.argmax()] = 1
        for i, l in enumerate(voted):
            if l != 0:
                attributes.append(attr_list[i])
        fw.write('|'.join(attributes) + '\n')
    time_stamp = time.asctime().replace(':', '_').split()
    fw.close()
    shutil.copy2(
        "../data/test_predict_aspect_ensemble.txt",
        "../data/backup/test_predict_aspect_ensemble_%s.txt" % time_stamp)