Esempio n. 1
0
        skip_frame = int(sys.argv[6])

        # the foldername containing trained models
        if layers[0] > 0:
            cae_folder_name = sys.argv[7]
        else:
            cae_folder_name = None

        train_flag = int(sys.argv[8])

    print('layers:', layers)
    print('layers_with_clusters:', layers_with_clusters)
    print('direction:', direction)
    print('cae_folder_name:', cae_folder_name)
    print('train_flag:', train_flag)
    params = ParamManager()

    # experiment parameters
    if train_flag == 0:
        train_str = 'train'
    elif train_flag == 1:
        train_str = 'all1'
    if skip_frame < 0:
        if data_str in ['Avenue', 'Avenue_sz240x360fr1', 'UCSDped1']:
            skip_frame = 2
        else:
            skip_frame = 1
    print('skip_frame = %d\n' % skip_frame)
    bshow = 1
    bh5py = 1
Esempio n. 2
0
        if len(sys.argv) >= 6:
            cae_folder_name = sys.argv[5]
        else:
            cae_folder_name = None

        # the folder name of trained low-level GANs
        if len(sys.argv) >= 7:
            gan0_folder_name = sys.argv[6]
        else:
            gan0_folder_name = None

    else:
        raise ValueError("Please provide some arguments")

    mode_explain = ['FtoM', 'MtoF']
    params = ParamManager()

    # experiment parameters
    data_range = [-1.0, 1.0]

    print('Mode: %d' % mode)
    print('layers: ', layers)
    print('layers_with_cluster', layers_with_cluster)
    print('cae_folder_name', cae_folder_name)
    print('gan0_folder_name', gan0_folder_name)

    train_str = 'train'
    test_str = 'test'

    bshow = 1
    bsave = 1
    else:
        mode = 0
        data_str = 'UCSDped2'
        batch_size = 100
        encoder_dims = [32, 16, 8]
        disp_freq = 10
        save_freq = 10
        num_epochs = 500
        device = '/cpu:0'

    print('mode = %d' % mode)
    print('data_str = %s' % data_str)
    print('batch_size = %d' % batch_size)
    print('encoder_dims :', encoder_dims)

    params = ParamManager()

    train_str = 'train'

    bshow = 1
    bh5py = 1

    frame_step = 5
    params.add('mode', mode, 'hvad_cae')
    params.add('data_str', data_str, 'hvad_cae')
    params.add('train_str', train_str, 'hvad_cae')
    params.add('bshow', bshow, 'hvad_cae')
    params.add('bh5py', bh5py, 'hvad_cae')
    params.add('frame_step', frame_step, 'hvad_cae')
    params.add('batch_size', batch_size, 'hvad_cae')
    params.add('encoder_dims', encoder_dims, 'hvad_cae')
Esempio n. 4
0
        # a file contains a list of testing videos
        test_str = sys.argv[4]

    else:
        raise ValueError("Please provide the arguments")

    gan_layer0_folder_name = 'hvad-gan-layer0-v5-brox'
    layer_ids = [int(s) for s in layer_id_str.split('-')]
    print('data_str=%s' % data_str)
    print('layer_ids=',layer_ids)
    print('cae_folder_name = %s' % cae_folder_name)
    print('test_str = %s' % test_str)
    print('use_gt = %d' % use_gt)
    print('gan_layer0_folder_name = %s' % gan_layer0_folder_name)
    params = ParamManager()

    # experiment parameters
    data_range = [-1.0, 1.0]

    net_str = cae_folder_name.split(sep='-lrelu')
    net_str = net_str[0]
    net_str = net_str.replace('hvad-', '')

    # layer = 0
    layer_with_cluster = False

    bh5py = 1
    resz = [256, 256]
    fr_rate_2obj = 0.1 # best for UCSDped1, UCSDped2 and Avenue
    thresh = 0.8