Esempio n. 1
0
def read_from_dir(data_dir, phasename='PV'):
    mhd_path = glob(os.path.join(data_dir, phasename + '_Image*.mhd'))[0]
    mhd_image = read_mhd_image(mhd_path)
    mask_path = os.path.join(data_dir, phasename + '_Registration.mhd')
    mask_image = read_mhd_image(mask_path)
    mhd_image = np.squeeze(mhd_image)
    mask_image = np.squeeze(mask_image)
    return mask_image, mhd_image
Esempio n. 2
0
def load_patch(patch_path, return_roi=False, parent_dir=None):
    if not return_roi:
        if patch_path.endswith('.jpg'):
            return Image.open(patch_path)
        if patch_path.endswith('.npy'):
            return np.load(patch_path)
    else:
        phasenames = ['NC', 'ART', 'PV']
        if patch_path.endswith('.jpg'):
            basename = os.path.basename(patch_path)
            basename = basename[: basename.rfind('_')]
            mask_images = []
            mhd_images = []
            for phasename in phasenames:
                image_path = glob(os.path.join(parent_dir, basename, phasename + '_Image*.mhd'))[0]
                mask_path = os.path.join(parent_dir, basename, phasename + '_Registration.mhd')
                mhd_image = read_mhd_image(image_path, rejust=True)
                mhd_image = np.squeeze(mhd_image)
                # show_image(mhd_image)
                mask_image = read_mhd_image(mask_path)
                mask_image = np.squeeze(mask_image)
                [xmin, xmax, ymin, ymax] = get_boundingbox(mask_image)
                # xmin -= 15
                # xmax += 15
                # ymin -= 15
                # ymax += 15
                mask_image = mask_image[xmin: xmax, ymin: ymax]
                mhd_image = mhd_image[xmin: xmax, ymin: ymax]
                mhd_image[mask_image != 1] = 0
                mask_images.append(mask_image)
                mhd_images.append(mhd_image)
            mhd_images = convert2depthlaster(mhd_images)
            return mhd_images
        if patch_path.endswith('.npy'):
            basename = os.path.basename(patch_path)
            basename = basename[: basename.rfind('_')]
            mask_images = []
            mhd_images = []
            for phasename in phasenames:
                image_path = glob(os.path.join(parent_dir, basename, phasename + '_Image*.mhd'))[0]
                mask_path = os.path.join(parent_dir, basename, phasename + '_Registration.mhd')
                mhd_image = read_mhd_image(image_path, rejust=False)    # 因为存储的是npy格式,所以不进行窗宽窗位的调整
                mhd_image = np.squeeze(mhd_image)
                # show_image(mhd_image)
                mask_image = read_mhd_image(mask_path)
                mask_image = np.squeeze(mask_image)
                [xmin, xmax, ymin, ymax] = get_boundingbox(mask_image)
                # xmin -= 15
                # xmax += 15
                # ymin -= 15
                # ymax += 15
                mask_image = mask_image[xmin: xmax, ymin: ymax]
                mhd_image = mhd_image[xmin: xmax, ymin: ymax]
                mhd_image[mask_image != 1] = 0
                mask_images.append(mask_image)
                mhd_images.append(mhd_image)
            mhd_images = convert2depthlaster(mhd_images)
            return mhd_images
Esempio n. 3
0
 def extract_patch_npy(dir_name, suffix_name, save_dir, patch_size, patch_step=1):
     '''
     提取指定类型病灶的patch 保存原始像素值,存成npy的格式
     :param patch_size: 提取patch的大小
     :param dir_name: 目前所有病例的存储路径
     :param suffix_name: 指定的病灶类型的后缀,比如说cyst 就是0
     :param save_dir: 提取得到的patch的存储路径
     :param patch_step: 提取patch的步长
     :return: None
     '''
     count = 0
     names = os.listdir(dir_name)
     for name in names:
         if name.endswith(suffix_name):
             # 只提取指定类型病灶的patch
             mask_images = []
             mhd_images = []
             for phasename in phasenames:
                 image_path = glob(os.path.join(dir_name, name, phasename + '_Image*.mhd'))[0]
                 mask_path = os.path.join(dir_name, name, phasename + '_Registration.mhd')
                 mhd_image = read_mhd_image(image_path)
                 mhd_image = np.squeeze(mhd_image)
                 # show_image(mhd_image)
                 mask_image = read_mhd_image(mask_path)
                 mask_image = np.squeeze(mask_image)
                 [xmin, xmax, ymin, ymax] = get_boundingbox(mask_image)
                 mask_image = mask_image[xmin: xmax, ymin: ymax]
                 mhd_image = mhd_image[xmin: xmax, ymin: ymax]
                 mhd_image[mask_image != 1] = 0
                 mask_images.append(mask_image)
                 mhd_images.append(mhd_image)
                 # show_image(mhd_image)
             mask_images = convert2depthlaster(mask_images)
             mhd_images = convert2depthlaster(mhd_images)
             count += 1
             [width, height, depth] = list(np.shape(mhd_images))
             patch_count = 1
             if width * height >= 900:
                 patch_step = int(math.sqrt(width * height / 160))
             for i in range(patch_size / 2, width - patch_size / 2, patch_step):
                 for j in range(patch_size / 2, height - patch_size / 2, patch_step):
                     cur_patch = mhd_images[i - patch_size / 2:i + patch_size / 2,
                                 j - patch_size / 2: j + patch_size / 2, :]
                     if (np.sum(mask_images[i - patch_size / 2:i + patch_size / 2,
                                j - patch_size / 2: j + patch_size / 2, :]) / (
                             (patch_size - 1) * (patch_size - 1) * 3)) < 0.9:
                         continue
                     save_path = os.path.join(save_dir, name + '_' + str(patch_count) + '.npy')
                     # print save_path
                     np.save(save_path, np.array(cur_patch))
                     patch_count += 1
             if patch_count == 1:
                 continue
                 # save_path = os.path.join(save_dir, name + '_' + str(patch_count) + '.png')
                 # roi_image = Image.fromarray(np.asarray(mhd_images, np.uint8))
                 # roi_image.save(save_path)
     print count
Esempio n. 4
0
    def extract_liver_density(dir_name, suffix_name, save_dir, subclass, type):
        '''
        提取肝脏的平均密度
        :param dir_name: 目前所有病例的存储路径
        :param suffix_name: 指定的病灶类型的后缀,比如说cyst 就是0
        :param save_dir: 提取得到的patch的存储路径
        :return: None
        '''
        count = 0

        names = os.listdir(dir_name)
        liver_density_dict = {}
        for name in names:
            if name.endswith(suffix_name):
                # 只提取指定类型病灶的patch
                liver_density = []
                for phasename in phasenames:
                    image_path = glob(
                        os.path.join(dir_name, name,
                                     phasename + '_Image*.mhd'))[0]
                    liver_mask_path = glob(
                        os.path.join(dir_name, name,
                                     phasename + '*Liver*.mhd'))[0]
                    mask_path = os.path.join(dir_name, name,
                                             phasename + '_Registration.mhd')
                    mhd_image = read_mhd_image(image_path, rejust=False)
                    mhd_image = np.squeeze(mhd_image)
                    # show_image(mhd_image)
                    mask_image = read_mhd_image(mask_path)
                    mask_image = np.squeeze(mask_image)

                    liver_mask_image = read_mhd_image(liver_mask_path)
                    liver_mask_image = np.squeeze(liver_mask_image)
                    # 计算肝脏的平均密度
                    value_sum = np.sum(mhd_image[liver_mask_image != 0])
                    pixel_num = np.sum(liver_mask_image != 0)
                    average_value = (1.0 * value_sum) / (1.0 * pixel_num)
                    liver_density.append(average_value)
                print name, liver_density
                liver_density_dict[name] = liver_density
        scio.savemat(
            os.path.join(
                save_dir, 'raw_liver_density_' + str(subclass) + '_' +
                str(type) + '.mat'), liver_density_dict)
        return liver_density_dict
Esempio n. 5
0
def load_ROI(dir_name):
    phasenames = ['NC', 'ART', 'PV']
    mask_images = []
    mhd_images = []
    for phasename in phasenames:
        image_path = glob(os.path.join(dir_name, phasename + '_Image*.mhd'))[0]
        mask_path = os.path.join(dir_name, phasename + '_Registration.mhd')
        mhd_image = read_mhd_image(image_path, rejust=True)
        mhd_image = np.squeeze(mhd_image)
        # show_image(mhd_image)
        mask_image = read_mhd_image(mask_path)
        mask_image = np.squeeze(mask_image)
        [xmin, xmax, ymin, ymax] = get_boundingbox(mask_image)
        # xmin -= 15
        # xmax += 15
        # ymin -= 15
        # ymax += 15
        mask_image = mask_image[xmin:xmax, ymin:ymax]
        mhd_image = mhd_image[xmin:xmax, ymin:ymax]
        mhd_image[mask_image != 1] = 0
        mask_images.append(mask_image)
        mhd_images.append(mhd_image)
    mhd_images = convert2depthlaster(mhd_images)
    return mhd_images
Esempio n. 6
0
    def extract_patch_npy_for_JI(dir_name, suffix_name, save_path, patch_size, patch_step=1, erode_size=1):
        '''
        提取指定类型病灶的patch 保存原始像素值,存成npy的格式
        :param patch_size: 提取patch的大小
        :param dir_name: 目前所有病例的存储路径
        :param suffix_name: 指定的病灶类型的后缀,比如说cyst 就是0
        :param save_path: 提取得到的patch的存储路径
        :param patch_step: 提取patch的步长
        :param erode_size: 向内缩的距离,因为我们需要确定内部区域,所以为了得到内部区域,我们就将原区域向内缩以得到内部区域
        :return: None
        '''
        count = 0
        names = os.listdir(dir_name)
        patches = []
        for name in names:
            if name.endswith(suffix_name):
                # 只提取指定类型病灶的patch
                mask_images = []
                mhd_images = []
                flag = True
                for phasename in phasenames:
                    image_path = glob(os.path.join(dir_name, name, phasename + '_Image*.mhd'))[0]
                    mask_path = os.path.join(dir_name, name, phasename + '_Registration.mhd')
                    mhd_image = read_mhd_image(image_path)
                    mhd_image = np.squeeze(mhd_image)
                    # show_image(mhd_image)
                    mask_image = read_mhd_image(mask_path)
                    mask_image = np.squeeze(mask_image)

                    [xmin, xmax, ymin, ymax] = get_boundingbox(mask_image)
                    if (xmax - xmin) <= erode_size or (ymax - ymin) <= erode_size:
                        flag = False
                        continue
                    mask_image = image_erode(mask_image, erode_size)
                    [xmin, xmax, ymin, ymax] = get_boundingbox(mask_image)
                    mask_image = mask_image[xmin: xmax, ymin: ymax]
                    mhd_image = mhd_image[xmin: xmax, ymin: ymax]
                    # mhd_image[mask_image != 1] = 0
                    mask_images.append(mask_image)
                    mhd_images.append(mhd_image)
                    # show_image(mhd_image)
                if not flag:
                    continue
                mask_images = convert2depthlaster(mask_images)
                mhd_images = convert2depthlaster(mhd_images)
                count += 1
                [width, height, depth] = list(np.shape(mhd_images))
                patch_count = 1
                # if width * height >= 900:
                #     patch_step = int(math.sqrt(width * height / 100))
                for i in range(patch_size / 2, width - patch_size / 2, patch_step):
                    for j in range(patch_size / 2, height - patch_size / 2, patch_step):
                        cur_patch = mhd_images[i - patch_size / 2:i + patch_size / 2 + 1,
                                    j - patch_size / 2: j + patch_size / 2 + 1, :]
                        if (np.sum(mask_images[i - patch_size / 2:i + patch_size / 2,
                                   j - patch_size / 2: j + patch_size / 2, :]) / (
                                        (patch_size - 1) * (patch_size - 1) * 3)) < 0.5:
                            continue
                        # save_path = os.path.join(save_dir, name + '_' + str(patch_count) + '.npy')
                        # print save_path
                        # np.save(save_path, np.array(cur_patch))
                        cur_patch = np.reshape(cur_patch, [patch_size*patch_size*3])
                        patches.append(cur_patch)
                        patch_count += 1
                if patch_count == 1:
                    continue
        print np.shape(patches)
        patches = np.concatenate([patches, np.expand_dims([int(suffix_name)] * len(patches), axis=1)], axis=1)
        print np.shape(patches)
        np.save(save_path, patches)
        print count
Esempio n. 7
0
def extract_patches_multifiles(data_dir, names, target_label, patch_size, patch_step, save_dir):
    patches = []
    labeles = []
    coding_labeles = []
    for name in names:
        if name is not None and not name.endswith(target_label):
            continue

        cur_data_dir = os.path.join(data_dir, name)
        patches_save_path = os.path.join(cur_data_dir, 'patches.npy')
        coding_labeles_path = os.path.join(cur_data_dir, 'coding_labeles.npy')
        labeles_path = os.path.join(cur_data_dir, 'labeles.npy')
        mask_images = []
        mhd_images = []
        if not os.path.exists(patches_save_path):
            for phasename in ['NC', 'ART', 'PV']:
                image_path = glob(os.path.join(data_dir, name, phasename + '_Image*.mhd'))[0]
                mask_path = os.path.join(data_dir, name, phasename + '_Registration.mhd')
                mhd_image = read_mhd_image(image_path, rejust=True)
                mhd_image = np.squeeze(mhd_image)
                # show_image(mhd_image)
                mask_image = read_mhd_image(mask_path)
                mask_image = np.squeeze(mask_image)
                [xmin, xmax, ymin, ymax] = get_boundingbox(mask_image)
                mask_image = mask_image[xmin: xmax, ymin: ymax]
                mhd_image = mhd_image[xmin: xmax, ymin: ymax]
                mhd_image[mask_image != 1] = 0
                mask_images.append(mask_image)
                mhd_images.append(mhd_image)
                # show_image(mhd_image)
            cur_patches = []
            cur_coding_labeles = []
            mask_images = convert2depthlaster(mask_images)
            coding_image = convert_coding(cur_data_dir)
            mhd_images = convert2depthlaster(mhd_images)
            [width, height, _] = list(np.shape(mhd_images))
            print 'extract patches from ', cur_data_dir, ' at ', str(
                os.getpid()), ' corresponding size is [', width, height, ']'
            for i in range(patch_size / 2, width - patch_size / 2, patch_step):
                for j in range(patch_size / 2, height - patch_size / 2, patch_step):
                    cur_patch = mhd_images[i - patch_size / 2:i + patch_size / 2 + 1, j - patch_size / 2: j + patch_size / 2 + 1, :]
                    cur_label = target_label
                    cur_coding_label = coding_image[i, j]
                    if save_dir is not None:
                        save_path_dir = os.path.join(save_dir, str(cur_coding_label), str(cur_label))
                        if os.path.exists(save_path_dir):
                            cur_id = len(os.listdir(save_path_dir))
                        else:
                            cur_id = 0
                        save_path = os.path.join(save_dir, str(cur_coding_label), str(cur_label), str(cur_id) + '.npy')
                        check_save_path(save_path)
                        np.save(save_path, cur_patch)
                    else:
                        cur_patches.append(flatten_multiphase(np.array(cur_patch)))
                        cur_coding_labeles.append(cur_coding_label)
            if save_dir is None:
                if len(cur_patches) == 0:
                    continue
                patches.append(cur_patches)
                coding_labeles.append(cur_coding_labeles)
                labeles.append(int(target_label))
            np.save(patches_save_path, cur_patches)
            np.save(coding_labeles_path, cur_coding_labeles)

        else:
            cur_patches = np.load(patches_save_path)
            cur_coding_labeles = np.load(coding_labeles_path)
            coding_labeles.append(cur_coding_labeles)
            patches.append(cur_patches)
            labeles.append(int(target_label))
    print len(patches), len(coding_labeles), len(labeles)
    return patches, coding_labeles, labeles
Esempio n. 8
0
def extract_patch(dir_name, suffix_name, patch_size, patch_step=1):
    '''
    提取指定类型病灶的patch
    :param patch_size: 提取patch的大小
    :param dir_name: 目前所有病例的存储路径
    :param suffix_name: 指定的病灶类型的后缀,比如说cyst 就是0
    :param patch_step: 提取patch的步长
    :return: patch_arr (图像的个数, patch的个数)
    '''
    count = 0
    names = os.listdir(dir_name)
    patches_arr = []
    paths = []
    return_mhd_images = []
    for name in names:
        if name.endswith(suffix_name):
            # 只提取指定类型病灶的patch
            mask_images = []
            mhd_images = []
            paths.append(os.path.join(dir_name, name))
            for phasename in phasenames:
                image_path = glob(
                    os.path.join(dir_name, name, phasename + '_Image*.mhd'))[0]
                mask_path = os.path.join(dir_name, name,
                                         phasename + '_Registration.mhd')
                mhd_image = read_mhd_image(image_path, rejust=mhd_adjust)
                mhd_image = np.squeeze(mhd_image)
                # show_image(mhd_image)
                mask_image = read_mhd_image(mask_path)
                mask_image = np.squeeze(mask_image)
                [xmin, xmax, ymin, ymax] = get_boundingbox(mask_image)
                # xmin -= 15
                # xmax += 15
                # ymin -= 15
                # ymax += 15
                mask_image = mask_image[xmin:xmax, ymin:ymax]
                mhd_image = mhd_image[xmin:xmax, ymin:ymax]
                mhd_image[mask_image != 1] = 0
                mask_images.append(mask_image)
                mhd_images.append(mhd_image)
                # show_image(mhd_image)
            mask_images = convert2depthlaster(mask_images)
            mhd_images = convert2depthlaster(mhd_images)
            return_mhd_images.append(mhd_images)
            # show_image(mhd_images)
            count += 1
            [width, height, depth] = list(np.shape(mhd_images))
            patch_count = 1
            # if width * height >= 400:
            #     patch_step = int(math.sqrt(width * height / 100))
            patches = []
            for i in range(patch_size / 2, width - patch_size / 2, patch_step):
                for j in range(patch_size / 2, height - patch_size / 2,
                               patch_step):
                    cur_patch = mhd_images[i - patch_size / 2:i +
                                           patch_size / 2,
                                           j - patch_size / 2:j +
                                           patch_size / 2, :]
                    if (np.sum(mask_images[i - patch_size / 2:i + patch_size /
                                           2, j - patch_size / 2:j +
                                           patch_size / 2, :]) /
                        ((patch_size - 1) * (patch_size - 1) * 3)) < 0.9:
                        continue
                    patches.append(cur_patch)
            patches_arr.append(patches)
            if patch_count == 1:
                continue
    print len(patches_arr)
    return patches_arr, paths, return_mhd_images
Esempio n. 9
0
def generate_heatmap_version2(data_path, pointed_phase_index, patch_size,
                              save_path):
    '''
    生成label map,生成的label map严格按照ROI的边界来生成
    :param data_path:
    :param pointed_phase_index:
    :param patch_size:
    :param save_path:
    :return:
    '''
    start_time = time.time()
    mhd_images = []
    mask_images = []
    for phase_name in ['NC', 'ART', 'PV']:
        image_path = glob(os.path.join(data_path,
                                       phase_name + '_Image*.mhd'))[0]
        mask_path = os.path.join(data_path, phase_name + '_Registration.mhd')
        mhd_image = read_mhd_image(image_path)
        mask_image = read_mhd_image(mask_path)
        mhd_image = np.squeeze(mhd_image)
        mask_image = np.squeeze(mask_image)

        mhd_images.append(mhd_image)
        mask_images.append(mask_image)
    mask_images = convert2depthlaster(mask_images)
    mhd_images = convert2depthlaster(mhd_images)
    print np.shape(mask_images)
    new_mask_image = np.zeros([512, 512], np.uint8)
    [xmin, xmax, ymin,
     ymax] = get_boundingbox(mask_images[:, :, pointed_phase_index])
    roi_image = mask_images[xmin:xmax, ymin:ymax, :]
    patches = []
    for i in range(xmin, xmax):
        for j in range(ymin, ymax):
            if mask_images[i, j, pointed_phase_index] == 0:
                continue
            cur_patch = mhd_images[i - patch_size / 2:i + patch_size / 2,
                                   j - patch_size / 2:j + patch_size / 2, :]
            patches.append(cur_patch)
    start_index = 0
    end_index = 0
    predicted_labels = []
    while True:
        end_index = start_index + net_config.BATCH_SIZE
        print end_index, '/', len(patches)
        if end_index >= len(patches):
            end_index = len(patches)
        cur_patches = patches[start_index:end_index]
        # expand_patches = patches[start_index: end_index]
        expand_patches = [roi_image] * len(
            cur_patches)  # 使用完整的ROI作为expand 的patch
        roi_images_values = resize_images(cur_patches,
                                          net_config.ROI_SIZE_W,
                                          rescale=(not divided_liver))
        expand_roi_images_values = resize_images(expand_patches,
                                                 net_config.EXPAND_SIZE_W,
                                                 rescale=(not divided_liver))
        predicted_label_value = sess.run(predicted_label_tensor,
                                         feed_dict={
                                             roi_images:
                                             roi_images_values,
                                             expand_roi_images:
                                             expand_roi_images_values,
                                             batch_size_tensor:
                                             len(roi_images_values),
                                             is_training_tensor:
                                             False
                                         })
        predicted_labels.extend(predicted_label_value)
        if end_index == len(patches):
            break
        start_index = end_index
    start_index = 0
    statics = [0, 0, 0, 0]
    for i in range(xmin, xmax):
        for j in range(ymin, ymax):
            if mask_images[i, j, pointed_phase_index] == 0:
                continue
            print(i - xmin) * (xmax - xmin) + (j - ymin)
            new_mask_image[i, j] = predicted_labels[start_index] + 2
            statics[predicted_labels[start_index]] += 1
            start_index += 1
    print statics
    end_time = time.time()
    print 'cost time is ', (end_time - start_time)
    save_mhd_image(new_mask_image, save_path)
Esempio n. 10
0
def extract_interior_patch_npy(dir_name,
                               suffix_name,
                               save_dir,
                               patch_size,
                               patch_step=1,
                               erode_size=1):
    '''
    提取指定类型病灶的patch 保存原始像素值,存成npy的格式
    :param patch_size: 提取patch的大小
    :param dir_name: 目前所有病例的存储路径
    :param suffix_name: 指定的病灶类型的后缀,比如说cyst 就是0
    :param save_dir: 提取得到的patch的存储路径
    :param patch_step: 提取patch的步长
    :param erode_size: 向内缩的距离,因为我们需要确定内部区域,所以为了得到内部区域,我们就将原区域向内缩以得到内部区域
    :return: None
    '''
    count = 0
    names = os.listdir(dir_name)
    patches = []
    for name in names:
        if name.endswith(suffix_name):
            # 只提取指定类型病灶的patch
            mask_images = []
            mhd_images = []
            flag = True
            for phasename in phasenames:
                image_path = glob(
                    os.path.join(dir_name, name, phasename + '_Image*.mhd'))[0]
                mask_path = os.path.join(dir_name, name,
                                         phasename + '_Registration.mhd')
                mhd_image = read_mhd_image(image_path)
                mhd_image = np.squeeze(mhd_image)
                # show_image(mhd_image)
                mask_image = read_mhd_image(mask_path)
                mask_image = np.squeeze(mask_image)

                [xmin, xmax, ymin, ymax] = get_boundingbox(mask_image)
                if (xmax - xmin) <= 5 or (ymax - ymin) <= 5:
                    flag = False
                    continue
                mask_image = image_erode(mask_image, erode_size)
                [xmin, xmax, ymin, ymax] = get_boundingbox(mask_image)
                mask_image = mask_image[xmin:xmax, ymin:ymax]
                mhd_image = mhd_image[xmin:xmax, ymin:ymax]
                # mhd_image[mask_image != 1] = 0
                mask_images.append(mask_image)
                mhd_images.append(mhd_image)
                # show_image(mhd_image)
            if not flag:
                continue
            mask_images = convert2depthlaster(mask_images)
            mhd_images = convert2depthlaster(mhd_images)
            count += 1
            [width, height, depth] = list(np.shape(mhd_images))
            patch_count = 1
            cur_patches = []
            # if width * height >= 900:
            #     patch_step = int(math.sqrt(width * height / 100))
            for i in range(patch_size / 2, width - patch_size / 2, patch_step):
                for j in range(patch_size / 2, height - patch_size / 2,
                               patch_step):
                    cur_patch = mhd_images[i - patch_size / 2:i +
                                           patch_size / 2,
                                           j - patch_size / 2:j +
                                           patch_size / 2, :]
                    if (np.sum(mask_images[i - patch_size / 2:i + patch_size /
                                           2, j - patch_size / 2:j +
                                           patch_size / 2, :]) /
                        ((patch_size - 1) * (patch_size - 1) * 3)) < 0.5:
                        continue
                    if save_dir is not None:
                        save_path = os.path.join(
                            save_dir, name + '_' + str(patch_count) + '.npy')
                        np.save(save_path, np.array(cur_patch))
                    else:
                        cur_patches.append(flatten_arr(np.asarray(cur_patch)))
                    patch_count += 1

            if save_dir is None:
                if len(cur_patches) == 0:
                    continue
                patches.append(cur_patches)
            if patch_count == 1:
                continue
                # save_path = os.path.join(save_dir, name + '_' + str(patch_count) + '.png')
                # roi_image = Image.fromarray(np.asarray(mhd_images, np.uint8))
                # roi_image.save(save_path)
    print count
    if save_dir is None:
        return patches