def predict_apple(): csv = 'assets/Apple.csv' global model, graph, last, df model, graph = init('apple_model') df = pd.read_csv(csv) df = df.set_index('Date') df = df.iloc[:, 10:11].values df = np.array(df) df = scaler.fit_transform(df) last = length(csv) x = [df[last - 60:last, 0]] x = np.array(x) x = x.reshape(1, x.shape[1], 1) pred = model.predict(x) K.clear_session() prediction = scaler.inverse_transform(pred) return prediction[0]
csv = '../assets/Apple.csv' scaler = MinMaxScaler(feature_range=(0, 1)) df = pd.read_csv(csv, header=0) df = df.set_index('Date') df = df[::-1] df = df.iloc[:, 10:11].values print(df[0:5]) data = scaler.fit_transform(df) X = [] y = [] for i in range(60, length(csv)): X.append(data[i - 60:i, 0]) y.append(data[i, 0]) X = np.array(X) y = np.array(y) X = X.reshape(X.shape[0], X.shape[1], 1) model = Sequential() model.add(LSTM(64, input_shape=(X.shape[1], 1), return_sequences=True)) model.add(Dropout(.1)) model.add(LSTM(64, return_sequences=True)) model.add(Dropout(.1)) model.add(LSTM(64))