Esempio n. 1
0
def test_caller(path, step_ind, on_val):

    # Disable warnings
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '0'

    ###########################
    # Load the model parameters
    ###########################

    # Load model parameters
    config = Config()
    config.load(path)
    # Should change the parameter of 3DMatch model to adopt to ETH
    import pdb
    pdb.set_trace()
    config.first_subsampling_dl = 0.05
    config.dataset = 'ETH'
    config.KP_extent = 2

    ##################################
    # Change model parameters for test
    ##################################

    # Change parameters for the test here. For example, you can stop augmenting the input data.

    #config.augment_noise = 0.0001
    #config.augment_color = 1.0
    #config.validation_size = 500
    #config.batch_num = 10

    ##############
    # Prepare Data
    ##############

    print()
    print('Dataset Preparation')
    print('*******************')

    # Initiate dataset configuration
    dataset = ETHDataset(1, load_test=True)

    # Initialize input pipelines
    dataset.init_test_input_pipeline(config)

    ##############
    # Define Model
    ##############

    print('Creating Model')
    print('**************\n')
    t1 = time.time()

    model = KernelPointFCNN(dataset.flat_inputs, config)

    # Find all snapshot in the chosen training folder
    snap_path = os.path.join(path, 'snapshots')
    snap_steps = [
        int(f[:-5].split('-')[-1]) for f in os.listdir(snap_path)
        if f[-5:] == '.meta'
    ]

    # Find which snapshot to restore
    chosen_step = np.sort(snap_steps)[step_ind]
    chosen_snap = os.path.join(path, 'snapshots',
                               'snap-{:d}'.format(chosen_step))

    # Create a tester class
    tester = ModelTester(model, restore_snap=chosen_snap)
    t2 = time.time()

    print('\n----------------')
    print('Done in {:.1f} s'.format(t2 - t1))
    print('----------------\n')

    ############
    # Start test
    ############

    print('Start Test')
    print('**********\n')

    tester.generate_descriptor(model, dataset)
def visu_caller(path, step_ind, relu_idx, compute_activations):

    # Check if activation have already been computed
    if relu_idx is not None:
        visu_path = os.path.join('visu',
                                 'visu_' + path.split('/')[-1],
                                 'top_activations',
                                 'Relu{:02d}'.format(relu_idx))
        if not os.path.exists(visu_path):
            message = 'No activations found for Relu number {:d} of the model {:s}.'
            print(message.format(relu_idx, path.split('/')[-1]))
            compute_activations = True
        else:
            # Get the list of files
            feature_files = np.sort([f for f in os.listdir(visu_path) if f.endswith('.ply')])
            if len(feature_files) == 0:
                message = 'No activations found for Relu number {:d} of the model {:s}.'
                print(message.format(relu_idx, path.split('/')[-1]))
                compute_activations = True
    else:
        compute_activations = True

    if compute_activations:

        ##########################
        # Initiate the environment
        ##########################

        # Choose which gpu to use
        GPU_ID = '0'

        # Set GPU visible device
        os.environ['CUDA_VISIBLE_DEVICES'] = GPU_ID

        # Disable warnings
        os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

        ###########################
        # Load the model parameters
        ###########################

        # Load model parameters
        config = Config()
        config.load(path)

        ##################################
        # Change model parameters for test
        ##################################

        # Change parameters for the test here. For example, you can stop augmenting the input data.

        #config.augment_noise = 0.0001
        #config.augment_symmetries = False

        config.batch_num = 3
        config.in_radius = 4
        config.validation_size = 200
        config.dataset = 'NPM3D'

        ##############
        # Prepare Data
        ##############

        print()
        print('Dataset Preparation')
        print('*******************')


        # Initiate dataset configuration
        if config.dataset.startswith('ModelNet40'):
            dataset = ModelNet40Dataset(config.input_threads)
        elif config.dataset == 'S3DIS':
            dataset = S3DISDataset(config.input_threads)
            on_val = True
        elif config.dataset == 'Scannet':
            dataset = ScannetDataset(config.input_threads, load_test=True)
        elif config.dataset.startswith('ShapeNetPart'):
            dataset = ShapeNetPartDataset(config.dataset.split('_')[1], config.input_threads)
        elif config.dataset == 'NPM3D':
            dataset = NPM3DDataset(config.input_threads, load_test=True)
        elif config.dataset == 'Semantic3D':
            dataset = Semantic3DDataset(config.input_threads)
        else:
            raise ValueError('Unsupported dataset : ' + config.dataset)

        # Create subsample clouds of the models
        dl0 = config.first_subsampling_dl
        dataset.load_subsampled_clouds(dl0)

        # Initialize input pipelines
        if config.dataset == 'S3DIS':
            dataset.init_input_pipeline(config)
        else:
            dataset.init_test_input_pipeline(config)

        ##############
        # Define Model
        ##############

        print('Creating Model')
        print('**************\n')
        t1 = time.time()

        if config.dataset.startswith('ShapeNetPart'):
            model = KernelPointFCNN(dataset.flat_inputs, config)
        elif config.dataset.startswith('S3DIS'):
            model = KernelPointFCNN(dataset.flat_inputs, config)
        elif config.dataset.startswith('Scannet'):
            model = KernelPointFCNN(dataset.flat_inputs, config)
        elif config.dataset.startswith('NPM3D'):
            model = KernelPointFCNN(dataset.flat_inputs, config)
        elif config.dataset.startswith('ModelNet40'):
            model = KernelPointCNN(dataset.flat_inputs, config)
        elif config.dataset.startswith('Semantic3D'):
            model = KernelPointFCNN(dataset.flat_inputs, config)
        else:
            raise ValueError('Unsupported dataset : ' + config.dataset)

        # Find all snapshot in the chosen training folder
        snap_path = os.path.join(path, 'snapshots')
        snap_steps = [int(f[:-5].split('-')[-1]) for f in os.listdir(snap_path) if f[-5:] == '.meta']

        # Find which snapshot to restore
        chosen_step = np.sort(snap_steps)[step_ind]
        chosen_snap = os.path.join(path, 'snapshots', 'snap-{:d}'.format(chosen_step))

        # Create a tester class
        visualizer = ModelVisualizer(model, restore_snap=chosen_snap)
        t2 = time.time()

        print('\n----------------')
        print('Done in {:.1f} s'.format(t2 - t1))
        print('----------------\n')

        #####################
        # Start visualization
        #####################

        print('Start visualization')
        print('*******************\n')

        relu_idx = visualizer.top_relu_activations(model, dataset, relu_idx)

    # Show the computed activations
    ModelVisualizer.show_activation(path, relu_idx)