Esempio n. 1
0
def test_net(
    net,
    image,
    text_threshold,
    link_threshold,
    low_text,
    cuda,
    poly,
    canvas_size=1280,
    mag_ratio=1.5,
):
    # resize

    img_resized, target_ratio, size_heatmap = imgproc.resize_aspect_ratio(
        image,
        canvas_size,
        interpolation=cv2.INTER_LINEAR,
        mag_ratio=mag_ratio)
    ratio_h = ratio_w = 1 / target_ratio

    # preprocessing
    x = imgproc.normalizeMeanVariance(img_resized)
    x = torch.from_numpy(x).permute(2, 0, 1)  # [h, w, c] to [c, h, w]
    x = Variable(x.unsqueeze(0))  # [c, h, w] to [b, c, h, w]
    if cuda:
        x = x.cuda()

    # forward pass
    with torch.no_grad():
        y, feature = net(x)

    # make score and link map
    score_text = y[0, :, :, 0].cpu().data.numpy().astype(np.float32)
    score_link = y[0, :, :, 1].cpu().data.numpy().astype(np.float32)

    # NOTE
    score_text = score_text[:size_heatmap[0], :size_heatmap[1]]
    score_link = score_link[:size_heatmap[0], :size_heatmap[1]]

    # Post-processing
    boxes, polys = getDetBoxes(score_text, score_link, text_threshold,
                               link_threshold, low_text, poly)

    # coordinate adjustment
    boxes = adjustResultCoordinates(boxes, ratio_w, ratio_h)
    polys = adjustResultCoordinates(polys, ratio_w, ratio_h)
    for k in range(len(polys)):
        if polys[k] is None:
            polys[k] = boxes[k]

    # render results (optional)
    score_text = score_text.copy()
    render_score_text = imgproc.cvt2HeatmapImg(score_text)
    render_score_link = imgproc.cvt2HeatmapImg(score_link)
    render_img = [render_score_text, render_score_link]
    # ret_score_text = imgproc.cvt2HeatmapImg(render_img)

    return boxes, polys, render_img
Esempio n. 2
0
def test_net(net, image, text_threshold, link_threshold, low_text, poly,
             refine_net):
    # t0 = time.time()

    # resize
    img_resized, target_ratio, size_heatmap = resize_aspect_ratio(
        image,
        args.canvas_size,
        interpolation=cv2.INTER_LINEAR,
        mag_ratio=args.mag_ratio)
    ratio_h = ratio_w = 1 / target_ratio

    # preprocessing
    x = img_normalize(img_resized)
    x = np.expand_dims(x, axis=0)  # [h, w, c] to [b, h, w, c]

    # forward pass
    y, feature = net(x)

    # make score and link map
    score_text = y[0, :, :, 0]
    score_link = y[0, :, :, 1]

    # refine link
    if refine_net is not None:
        # TODO
        pass

    # t0 = time.time() - t0
    # t1 = time.time()

    # Post-processing
    boxes, polys = getDetBoxes(score_text, score_link, text_threshold,
                               link_threshold, low_text, poly)

    # coordinate adjustment
    boxes = adjustResultCoordinates(boxes, ratio_w, ratio_h)
    polys = adjustResultCoordinates(polys, ratio_w, ratio_h)
    for k in range(len(polys)):
        if polys[k] is None:
            polys[k] = boxes[k]

    # t1 = time.time() - t1

    # render results (optional)
    render_img = score_text.numpy()
    render_img = np.hstack((render_img, np.ones(
        (np.shape(render_img)[0], 5)), score_link))
    ret_score_text = score_to_heat_map(render_img)

    # if args.show_time : print("\ninfer/postproc time : {:.3f}/{:.3f}".format(t0, t1))

    return boxes, polys, ret_score_text
Esempio n. 3
0
def test_net(net, image, text_threshold, link_threshold, low_text, cuda, poly, refine_net=None):
    t0 = time.time()

    # resize
    img_resized, target_ratio, size_heatmap = imgproc.resize_aspect_ratio(image, args.canvas_size, interpolation=cv2.INTER_LINEAR, mag_ratio=args.mag_ratio)
    ratio_h = ratio_w = 1 / target_ratio

    # preprocessing
    x = imgproc.normalizeMeanVariance(img_resized)
    x = torch.from_numpy(x).permute(2, 0, 1)    # [h, w, c] to [c, h, w]
    x = Variable(x.unsqueeze(0))                # [c, h, w] to [b, c, h, w]
    if cuda:
        x = x.cuda()

    # forward pass
    with torch.no_grad():
        y, feature = net(x)

    # make score and link map
    score_text = y[0,:,:,0].cpu().data.numpy()
    score_link = y[0,:,:,1].cpu().data.numpy()

    # refine link
    if refine_net is not None:
        with torch.no_grad():
            y_refiner = refine_net(y, feature)
        score_link = y_refiner[0,:,:,0].cpu().data.numpy()

    t0 = time.time() - t0
    t1 = time.time()

    # Post-processing
    boxes, polys = craft_utils.getDetBoxes(score_text, score_link, text_threshold, link_threshold, low_text, poly)

    # coordinate adjustment
    boxes = craft_utils.adjustResultCoordinates(boxes, ratio_w, ratio_h)
    polys = craft_utils.adjustResultCoordinates(polys, ratio_w, ratio_h)
    for k in range(len(polys)):
        if polys[k] is None: polys[k] = boxes[k]

    t1 = time.time() - t1

    # render results (optional)
    render_img = score_text.copy()
    render_img = np.hstack((render_img, score_link))
    ret_score_text = imgproc.cvt2HeatmapImg(render_img)

    if args.show_time : print("\ninfer/postproc time : {:.3f}/{:.3f}".format(t0, t1))

    return boxes, polys, ret_score_text