def build(self): network1 = SimpleNet1(in_ch=1, out_ch=10) network2 = SimpleNet2(in_ch=1, out_ch=10) detector1 = SimpleDetector(network1) module1 = DAGModule([network1, network2], dependency=[[-1], [0]], output=[1], device=self.device) module2 = DAGModule([network1, detector1], dependency=[[-1], [0]], output=[1], device=self.device) instance = DefenseInstance(model=module1, detector=module2) return instance
def build(self): ITdefense = InputTransformation(degrees=(-30, 30)) TEdefense = ThermometerEncoding((0, 1), num_space=10) Jpegdefense = JpegCompression((0, 1), 30) RSdefense = ReverseSigmoid() network1 = SimpleNet(in_ch=1, out_ch=10) network2 = SimpleNet(in_ch=10, out_ch=10) network3 = SimpleNet(in_ch=1, out_ch=10) module1 = DAGModule([TEdefense, network2], device=self.device) module2 = DAGModule([Jpegdefense, network1, RSdefense], device=self.device) module3 = DAGModule([ITdefense, network3], device=self.device) losscomb = LossCombine() classifier = DAGModule([module1, module2, module3, losscomb], dependency=[[-1], [-1], [-1], [0, 1, 2]], output=[3], device=self.device) instance = DefenseInstance(model=classifier) return instance
def build(self): Jpegdefense = JpegCompression((0, 1), COMPRESSION_QUALITY) RSdefense = ReverseSigmoid() classifier = DAGModule([Jpegdefense, self.network, RSdefense], device=self.device) instance = DefenseInstance(model=classifier, detector=None) return instance
def build(self): Jpegdefense = JpegCompression((0, 1), 30) RSdefense = ReverseSigmoid() network1 = SimpleNet(in_ch=1, out_ch=10) classifier = DAGModule([Jpegdefense, network1, RSdefense], device=self.device) instance = DefenseInstance(model=classifier, detector=None) return instance
def build(self): ITdefense = InputTransformation(degrees=(-30, 30)) # Varmin = VarianceMinimization(prob=0.3, norm=2) # Jpegdefense = JpegCompression((0, 1), 30) # RSdefense = ReverseSigmoid() network1 = SimpleNet(in_ch=1, out_ch=10) classifier = DAGModule([ITdefense, network1], device=self.device) instance = DefenseInstance(model=classifier, detector=None) return instance
def build(self): from zoo.saved_instances.JEM.CCF_model import CCF # nsteps = 10 ITdefense = InputTransformation(degrees=(-ROTATION_DEGREES, ROTATION_DEGREES)) classifier = DAGModule([ITdefense, self.network], device=self.device) # classifier = WrapperModel(f, nsteps).to(self.device) # classifier = gradient_attack_wrapper(f) # classifier = f.to(self.device) # classifier = nn.DataParallel(classifier).to(self.device) instance = DefenseInstance(model=classifier, detector=None) return instance
def build(self): from zoo.saved_instances.JEM.CCF_model import CCF Jpegdefense = JpegCompression((0, 1), COMPRESSION_QUALITY) RSdefense = ReverseSigmoid() classifier = DAGModule([Jpegdefense, self.network, RSdefense], device=self.device) # classifier = WrapperModel(f, nsteps).to(self.device) # classifier = gradient_attack_wrapper(f) # classifier = f.to(self.device) # classifier = nn.DataParallel(classifier).to(self.device) instance = DefenseInstance(model=classifier, detector=None) return instance
def build(self): network1 = ConvMedBig(device=self.device, dataset='cifar10', width1=4, width2=4, width3=4, linear_size=200, input_channel=3, with_normalization=True) classifier = DAGModule([network1], device=self.device) instance = DefenseInstance(model=classifier, detector=None) return instance
def build(self): ITdefense = InputTransformation(degrees=(-30, 30)) TEdefense = ThermometerEncoding((0, 1), num_space=10) Jpegdefense = JpegCompression((0, 1), 30) RSdefense = ReverseSigmoid() network1 = ConvMedBig(device=self.device, dataset='cifar10', width1=4, width2=4, width3=4, linear_size=200, input_channel=3, with_normalization=True) network2 = ConvMedBig(device=self.device, dataset='cifar10', width1=4, width2=4, width3=2, linear_size=200, input_channel=30, with_normalization=False) network3 = ConvMedBig(device=self.device, dataset='cifar10', width1=4, width2=4, width3=4, linear_size=200, input_channel=3, with_normalization=True) module1 = DAGModule([TEdefense, network2], device=self.device) module2 = DAGModule([Jpegdefense, network1, RSdefense], device=self.device) module3 = DAGModule([ITdefense, network3], device=self.device) losscomb = LossCombine() classifier = DAGModule([module1, module2, module3, losscomb], dependency=[[-1], [-1], [-1], [0, 1, 2]], output=[3], device=self.device) instance = DefenseInstance(model=classifier) return instance
def build(self): TEdefense = ThermometerEncoding((0, 1), num_space=10) network1 = ConvMedBig(device=self.device, dataset='cifar10', width1=4, width2=4, width3=2, linear_size=200, input_channel=30, with_normalization=False) classifier = DAGModule([TEdefense, network1], device=self.device) instance = DefenseInstance(model=classifier, detector=None) return instance
def build(self): network = ConvMedBig(device=self.device, dataset='cifar10', width1=4, width2=4, width3=4, linear_size=200, input_channel=3, with_normalization=True) network1 = ConvMedBig1(network) network2 = ConvMedBig2(network) detector1 = SimpleDetector(network1, 200) module1 = DAGModule([network1, network2], dependency=[[-1], [0]], output=[1], device=self.device) module2 = DAGModule([network1, detector1], dependency=[[-1], [0]], output=[1], device=self.device) classifier = module1 instance = DefenseInstance(model=classifier, detector=module2) # return instance return instance
def build(self): Jpegdefense = JpegCompression((0, 1), 60) RSdefense = ReverseSigmoid() network1 = ConvMedBig(device=self.device, dataset='cifar10', width1=4, width2=4, width3=4, linear_size=200, input_channel=3, with_normalization=True) classifier = DAGModule([Jpegdefense, network1, RSdefense], device=self.device) instance = DefenseInstance(model=classifier, detector=None) return instance
def build(self): TEdefense = ThermometerEncoding((0, 1), num_space=10) network1 = SimpleNet(in_ch=10, out_ch=10) classifier = DAGModule([TEdefense, network1], device=self.device) instance = DefenseInstance(model=classifier, detector=None) return instance
def build(self): network1 = SimpleNet(in_ch=1, out_ch=10) classifier = DAGModule([network1], device=self.device) instance = DefenseInstance(model=classifier, detector=None) return instance
def build(self): network = resnet.SparseResNet18(sparsities=[0.1, 0.1, 0.1, 0.1], sparse_func='reg').to(self.device) classifier = DAGModule([network], device=self.device) instance = DefenseInstance(model=classifier, detector=None) return instance
def build(self): ITdefense = InputTransformation(degrees=(-ROTATION_DEGREES, ROTATION_DEGREES)) classifier = DAGModule([ITdefense, self.network], device=self.device) instance = DefenseInstance(model=classifier, detector=None) return instance