def feature_extractor2_numpy(sample):
    resource, work_packages, total_time = sample
    work_packages = [[
        p.getX(),
        p.getY(),
        p.getUrgency(),
        p.getWorkingTime(),
        p.getUrgency() / p.getWorkingTime(),
        p.getId()
    ] for p in work_packages]
    gnn_feature = np.zeros((define.package_num, define.package_num, 3))
    mask = np.zeros((define.package_num, define.package_num, 1))
    node_feature = np.zeros((define.package_num, 3))

    for p_i in work_packages:
        i = p_i[5]
        node_feature[i, 0] = p_i[2]
        node_feature[i, 1] = p_i[3]
        node_feature[i, 2] = total_time
        for p_j in work_packages:
            j = p_j[5]
            gnn_feature[i, j, 4] = define.dis(p_i[0], p_j[0], p_i[1],
                                              p_j[1]) / define.speed
            gnn_feature[i, j, 5] = define.dis(resource[0], p_i[0], resource[1],
                                              p_i[1]) / define.speed + p_i[3]
            gnn_feature[i, j, 6] = define.dis(resource[0], p_j[0], resource[1],
                                              p_j[1]) / define.speed + p_j[3]
            mask[i, j] = 1
    # for i in range(7):
    #     print(np.max(gnn_feature[:,:,i]))
    # input()
    return np.expand_dims(gnn_feature, axis=0), np.expand_dims(
        mask, axis=0), np.expand_dims(node_feature, axis=0)
def feature_extractor_base(sample, device):
    resource, work_packages, total_time = sample
    work_packages = [[
        p.getX(),
        p.getY(),
        p.getUrgency(),
        p.getWorkingTime(),
        p.getUrgency() / p.getWorkingTime(),
        p.getId()
    ] for p in work_packages]
    work_packages.sort(key=lambda x: x[5])
    gnn_feature = np.zeros((define.package_num, define.package_num, 5))
    resource_dis = np.zeros(define.package_num)

    for p_i in work_packages:
        i = p_i[5]
        gnn_feature[i, :, 0] = p_i[2]
        gnn_feature[:, i, 1] = p_i[2]
        gnn_feature[i, :, 2] = p_i[3]
        gnn_feature[:, i, 3] = p_i[3]
        resource_dis[i] = define.dis(p_i[0], resource[1], p_i[1], resource[1])
        for p_j in work_packages:
            j = p_j[5]
            gnn_feature[i, j, 4] = define.dis(p_i[0], p_j[0], p_i[1], p_j[1])
    return torch.from_numpy(gnn_feature).to(device), torch.from_numpy(
        resource_dis).to(device)
def feature_extractor(sample):
    resource, work_packages, total_time = sample
    work_packages = [[
        p.getX(),
        p.getY(),
        p.getUrgency(),
        p.getWorkingTime(),
        p.getUrgency() / p.getWorkingTime()
    ] for p in work_packages]
    work_packages.sort(key=lambda x: x[4])
    work_packages.reverse()

    gnn_feature = np.zeros((define.package_num, define.package_num, 8))
    mask = np.zeros((define.package_num, define.package_num, 1))

    for i, p_i in enumerate(work_packages):
        for j, p_j in enumerate(work_packages):
            gnn_feature[i, j, 0] = p_i[2]
            gnn_feature[i, j, 1] = p_j[2]
            gnn_feature[i, j, 2] = p_i[3]
            gnn_feature[i, j, 3] = p_j[3]
            gnn_feature[i, j, 4] = define.dis(p_i[0], p_j[0], p_i[1],
                                              p_j[1]) / define.speed
            gnn_feature[i, j, 5] = define.dis(resource[0], p_i[0], resource[1],
                                              p_i[1]) / define.speed
            gnn_feature[i, j, 6] = define.dis(resource[0], p_j[0], resource[1],
                                              p_j[1]) / define.speed
            gnn_feature[i, j, 7] = total_time
            mask[i, j] = 1
    # for i in range(7):
    #     print(np.max(gnn_feature[:,:,i]))
    # input()
    return np.expand_dims(gnn_feature, axis=0), np.expand_dims(mask, axis=0)
Esempio n. 4
0
def extract_feat(resource, work_packages):
    work_packages = [[
        p.getX(),
        p.getY(),
        p.getUrgency(),
        p.getWorkingTime(),
        p.getUrgency(),
        p.getId()
    ] for p in work_packages]
    rx, ry, rid = resource.getPosition()
    gnn_feature = np.zeros((define.get_value('package_num') + 1,
                            define.get_value('package_num') + 1, 4))

    for p_i in work_packages:
        i = p_i[5]
        for p_j in work_packages:
            j = p_j[5]
            gnn_feature[i, j, 0] = p_i[2]
            gnn_feature[i, j, 1] = p_j[2]
            gnn_feature[
                i, j,
                2] = define.dis(p_i[0], p_j[0], p_i[1],
                                p_j[1]) / define.get_value('speed') + p_j[3]
            gnn_feature[i, j, 3] = 1
    for p in work_packages:
        i = p[5]
        gnn_feature[-1, i, 2] = define.dis(
            p[0], rx, p[1], ry) / define.get_value('speed') + p[3]
        gnn_feature[i, -1, 2] = define.dis(p[0], rx, p[1],
                                           ry) / define.get_value('speed')
    return torch.from_numpy(gnn_feature).unsqueeze(0).float()
def feature_extractor2(sample):
    resource, work_packages, total_time, end_axis = sample
    work_packages = [[
        p.getX(),
        p.getY(),
        p.getUrgency(),
        p.getWorkingTime(),
        p.getUrgency(),
        p.getId()
    ] for p in work_packages]
    gnn_feature = np.zeros(
        (define.get_value('package_num'), define.get_value('package_num'), 8))
    mask = np.zeros(
        (define.get_value('package_num'), define.get_value('package_num'), 1))

    for p_i in work_packages:
        i = p_i[5]
        for p_j in work_packages:
            j = p_j[5]
            gnn_feature[i, j, 0] = p_i[2]
            gnn_feature[i, j, 1] = p_j[2]
            # gnn_feature[i, j, 2] = p_i[3]
            # gnn_feature[i, j, 3] = p_j[3]
            gnn_feature[i, j,
                        2] = define.dis(end_axis[0], p_i[0], end_axis[1],
                                        p_i[1]) / define.get_value('speed')
            gnn_feature[i, j,
                        3] = define.dis(end_axis[0], p_j[0], end_axis[1],
                                        p_j[1]) / define.get_value('speed')
            gnn_feature[
                i, j,
                4] = define.dis(p_i[0], p_j[0], p_i[1],
                                p_j[1]) / define.get_value('speed') + p_j[3]
            gnn_feature[
                i, j,
                5] = define.dis(resource[0], p_i[0], resource[1],
                                p_i[1]) / define.get_value('speed') + p_i[3]
            gnn_feature[
                i, j,
                6] = define.dis(resource[0], p_j[0], resource[1],
                                p_j[1]) / define.get_value('speed') + p_j[3]
            gnn_feature[i, j, 7] = total_time
            mask[i, j] = 1
    # for i in range(7):
    #     print(np.max(gnn_feature[:,:,i]))
    # input()
    return np.expand_dims(gnn_feature, axis=0), np.expand_dims(mask, axis=0)
def feature_func(args):
    gnn_feature, mask, i, p_i, total_time, work_packages, resource = args
    for j, p_j in enumerate(work_packages):
        gnn_feature[i, j, 0] = p_i[2]
        gnn_feature[i, j, 1] = p_j[2]
        gnn_feature[i, j, 2] = p_i[3] / max(total_time, 1e-3)
        gnn_feature[i, j, 3] = p_j[3] / max(total_time, 1e-3)
        gnn_feature[i, j, 4] = define.dis(p_i[0], p_j[0], p_i[1],
                                          p_j[1]) / define.speed / max(
                                              total_time, 1e-3)
        gnn_feature[i, j, 5] = define.dis(resource[0], p_i[0], resource[1],
                                          p_i[1]) / define.speed / max(
                                              total_time, 1e-3)
        gnn_feature[i, j, 6] = define.dis(resource[0], p_j[0], resource[1],
                                          p_j[1]) / define.speed / max(
                                              total_time, 1e-3)
        for k in range(2, 7):
            if gnn_feature[i, j, k] > 1:
                tmp = gnn_feature[i, j, k] - 1
                gnn_feature[i, j, k] = 2 - np.exp(-tmp)
        mask[i, j] = 1
Esempio n. 7
0
 def getReturnTime(self, p):
     end_x, end_y = self.__resource.getInitialPos()
     p_x, p_y = p.getPosition()
     t = define.dis(end_x, p_x, end_y, p_y) / self.speed
     return t