if __name__ == '__main__': opts = parse_args() # print('Using config:') # pprint.pprint(cfg) if opts.cfg_file is not None: cfg_from_file(opts.cfg_file) print_cfg() if opts.test_net is None: qdic_dir = cfg.QUERY_DIR #osp.join(cfg.DATA_DIR, cfg.IMDB_NAME, 'query_dict') qdic = Dictionary(qdic_dir) qdic.load() vocab_size = qdic.size() test_model = models.net(opts.test_split, vocab_size, opts) test_net_path = osp.join(get_models_dir(), 'test.prototxt') with open(test_net_path, 'w') as f: f.write(str(test_model)) else: test_net_path = opts.test_net caffe.set_mode_gpu() caffe.set_device(opts.gpu_id) net = caffe.Net(test_net_path, opts.pretrained_model, caffe.TEST) net.name = os.path.splitext(os.path.basename(opts.pretrained_model))[0] log_file = osp.join( cfg.LOG_DIR, '%s_%s_%s_accuracy.txt' % (cfg.IMDB_NAME, cfg.FEAT_TYPE, cfg.PROJ_NAME))
class DDPNDataProvider: def __init__(self, data_split, batchsize=1): print('init DataProvider for %s : %s : %s' % (cfg.IMDB_NAME, cfg.PROJ_NAME, data_split)) self.is_ss = cfg.FEAT_TYPE == 'ss' self.ss_box_dir = cfg.SS_BOX_DIR self.ss_feat_dir = cfg.SS_FEAT_DIR self.feat_type = cfg.FEAT_TYPE if 'refcoco' in cfg.IMDB_NAME or cfg.IMDB_NAME == 'refclef': self.is_mscoco_prefix = True else: self.is_mscoco_prefix = False self.use_kld = cfg.USE_KLD # self.mscoco_prefix = cfg.MSCOCO_PREFIX self.rpn_topn = cfg.RPN_TOPN if self.is_ss: self.bottomup_feat_dim = cfg.SS_FEAT_DIM else: self.bottomup_feat_dim = cfg.BOTTOMUP_FEAT_DIM self.query_maxlen = cfg.QUERY_MAXLEN # self.data_paths = cfg.DATA_PATHS self.image_ext = '.jpg' data_splits = data_split.split(cfg.SPLIT_TOK) if 'train' in data_splits: self.mode = 'train' else: self.mode = 'test' self.batchsize = batchsize self.image_dir = cfg.IMAGE_DIR self.feat_dir = cfg.FEAT_DIR self.dict_dir = cfg.QUERY_DIR # osp.join(cfg.DATA_DIR, cfg.IMDB_NAME, 'query_dict') self.anno = self.load_data(data_splits) self.qdic = Dictionary(self.dict_dir) self.qdic.load() self.index = 0 self.batch_len = None self.num_query = len(self.anno) def __getitem__(self, index): if self.batch_len is None: self.n_skipped = 0 qid_list = self.get_query_ids() if self.mode == 'train': random.shuffle(qid_list) self.qid_list = qid_list self.batch_len = len(qid_list) self.epoch_counter = 0 print('mode %s has %d data' % (self.mode, self.batch_len)) qid = self.qid_list[index] gt_bbox = np.zeros(4) qvec = np.zeros(self.query_maxlen) img_feat = np.zeros((self.rpn_topn, self.bottomup_feat_dim)) bbox = np.zeros((self.rpn_topn, 4)) img_shape = np.zeros(2) spt_feat = np.zeros((self.rpn_topn, 5)) if self.use_kld: query_label = np.zeros(self.rpn_topn) query_label_mask = 0 query_bbox_targets = np.zeros((self.rpn_topn, 4)) query_bbox_inside_weights = np.zeros((self.rpn_topn, 4)) query_bbox_outside_weights = np.zeros((self.rpn_topn, 4)) valid_data = 1 t_qstr = self.anno[qid]['qstr'] t_qvec = self.str2list(t_qstr, self.query_maxlen) qvec[...] = t_qvec try: t_gt_bbox = self.anno[qid]['boxes'] gt_bbox[...] = t_gt_bbox[0] t_img_feat, t_num_bbox, t_bbox, t_img_shape = self.get_topdown_feat( self.anno[qid]['iid']) t_img_feat = t_img_feat.transpose((1, 0)) t_img_feat = (t_img_feat / np.sqrt((t_img_feat**2).sum())) img_feat[:t_num_bbox, :] = t_img_feat bbox[:t_num_bbox, :] = t_bbox # spt feat img_shape[...] = np.array(t_img_shape) t_spt_feat = self.get_spt_feat(t_bbox, t_img_shape) spt_feat[:t_num_bbox, :] = t_spt_feat # query label, mask t_gt_bbox = np.array(self.anno[qid]['boxes']) t_query_label, t_query_label_mask, t_query_bbox_targets, t_query_bbox_inside_weights, t_query_bbox_outside_weights = \ self.get_labels(t_bbox, t_gt_bbox) if self.use_kld: query_label[:t_num_bbox] = t_query_label query_label_mask = t_query_label_mask else: query_label = t_query_label query_bbox_targets[:t_num_bbox, :] = t_query_bbox_targets query_bbox_inside_weights[: t_num_bbox, :] = t_query_bbox_inside_weights query_bbox_outside_weights[: t_num_bbox, :] = t_query_bbox_outside_weights except Exception as e: print(e) valid_data = 0 if not self.use_kld: query_label = -1 query_label_mask = 0 query_bbox_inside_weights[...] = 0 query_bbox_outside_weights[...] = 0 print('data not found for iid: %s' % str(self.anno[qid]['iid'])) if self.index >= self.batch_len - 1: self.epoch_counter += 1 qid_list = self.get_query_ids() random.shuffle(qid_list) self.qid_list = qid_list print('a epoch passed') return gt_bbox, qvec, img_feat, bbox, img_shape, spt_feat, query_label, query_label_mask, \ query_bbox_targets, query_bbox_inside_weights, query_bbox_outside_weights, valid_data, int(self.anno[qid]['iid']) def __len__(self): return self.num_query def get_image_ids(self): qid_list = self.get_query_ids() iid_list = set() for qid in qid_list: iid_list.add(self.anno[qid]['iid']) return list(iid_list) def get_query_ids(self): return self.anno.keys() def get_num_query(self): return self.num_query def load_data(self, data_splits): anno = {} for data_split in data_splits: # data_path = osp.join(cfg.DATA_DIR, cfg.IMDB_NAME, 'format_%s.pkl'%str(data_split)) data_path = cfg.ANNO_PATH % str(data_split) t_anno = load(data_path) anno.update(t_anno) return anno def get_vocabsize(self): return self.qdic.size() def get_iid(self, qid): return self.anno[qid]['iid'] def get_img_path(self, iid): if self.is_mscoco_prefix: return os.path.join( self.image_dir, 'COCO_train2014_' + str(iid).zfill(12) + self.image_ext) else: return os.path.join(self.image_dir, str(iid) + self.image_ext) def str2list(self, qstr, query_maxlen): q_list = qstr.split() qvec = np.zeros(query_maxlen, dtype=np.int64) # cvec = np.zeros(query_maxlen, dtype=np.int64) for i, _ in enumerate(range(query_maxlen)): # if i < query_maxlen - len(q_list): # cvec[i] = 0 # else: w = q_list[i - (query_maxlen - len(q_list))] # is the word in the vocabulary? # if self.qdic.has_token(w) is False: # w = cfg.UNK_WORD #'<unk>' qvec[i] = self.qdic.lookup(w) # cvec[i] = 0 if i == query_maxlen - len(q_list) else 1 # return qvec, cvec return qvec def load_ss_box(self, ss_box_path): boxes = np.loadtxt(ss_box_path) if len(boxes) == 0: raise Exception("boxes is None!") boxes = boxes - 1 boxes[:, [0, 1]] = boxes[:, [1, 0]] boxes[:, [2, 3]] = boxes[:, [3, 2]] return boxes def get_topdown_feat(self, iid): try: if self.is_ss: img_path = self.get_img_path(iid) im = skimage.io.imread(img_path) img_h = im.shape[0] img_w = im.shape[1] feat_path = os.path.join(self.ss_feat_dir, str(iid) + '.npz') ss_box_path = os.path.join(self.ss_box_dir, str(iid) + '.txt') bbox = self.load_ss_box(ss_box_path) num_bbox = bbox.shape[0] img_feat = np.transpose(np.load(feat_path)['x'], (1, 0)) else: if self.is_mscoco_prefix: # zfill(12) insert 0 before the str feat_path = os.path.join( self.feat_dir, 'COCO_train2014_' + str(iid).zfill(12) + self.image_ext + '.npz') else: feat_path = os.path.join( self.feat_dir, str(iid) + self.image_ext + '.npz') feat_dict = np.load(feat_path) img_feat = feat_dict['x'] num_bbox = feat_dict['num_bbox'] bbox = feat_dict['bbox'] img_h = feat_dict['image_h'] img_w = feat_dict['image_w'] return img_feat, num_bbox, bbox, (img_h, img_w) except Exception as e: print(e) raise Exception("UnkownError") def create_batch_rpn(self, iid): img_path = self.get_img_path(iid) # img = cv2.imread(img_path) img_feat, num_bbox, bbox, img_shape = self.get_topdown_feat(iid) return num_bbox, bbox, img_path def create_batch_recall(self, qid): iid = self.anno[qid]['iid'] gt_bbox = self.anno[qid]['boxes'] img_path = self.get_img_path(iid) # img = cv2.imread(img_path) img_feat, num_bbox, bbox, img_shape = self.get_topdown_feat(iid) return num_bbox, bbox, gt_bbox, img_path def compute_targets(self, ex_rois, gt_rois, query_label): """Compute bounding-box regression targets for an image.""" assert ex_rois.shape[1] == 4 assert gt_rois.shape[1] == 4 targets = bbox_transform(ex_rois, gt_rois) if cfg.BBOX_NORMALIZE_TARGETS_PRECOMPUTED: # Optionally normalize targets by a precomputed mean and stdev targets = ((targets - np.array(cfg.BBOX_NORMALIZE_MEANS)) / np.array(cfg.BBOX_NORMALIZE_STDS)) query_bbox_target_data = np.hstack( (query_label[:, np.newaxis], targets)).astype(np.float32, copy=False) return query_bbox_target_data def get_query_bbox_regression_labels(self, query_bbox_target_data): query_label = query_bbox_target_data[:, 0] query_bbox_targets = np.zeros((query_label.size, 4), dtype=np.float32) query_bbox_inside_weights = np.zeros(query_bbox_targets.shape, dtype=np.float32) inds = np.where(query_label > 0)[0] if len(inds) != 0: for ind in inds: query_bbox_targets[ind, :] = query_bbox_target_data[ind, 1:] if query_label[ind] == 1: query_bbox_inside_weights[ind, :] = cfg.BBOX_INSIDE_WEIGHTS elif query_label[ind] == 2: query_bbox_inside_weights[ind, :] = 0.2 return query_bbox_targets, query_bbox_inside_weights # 获取 query score和 bbox regression 的 label, mask def get_labels(self, rpn_rois, gt_boxes): # overlaps: (rois x gt_boxes) # overlaps = bbox_overlaps(np.ascontiguousarray(rpn_rois, dtype=np.float), np.ascontiguousarray(gt_boxes[:, :4], dtype=np.float)) overlaps = bbox_overlaps( np.ascontiguousarray(rpn_rois, dtype=np.float), np.ascontiguousarray(gt_boxes[:, :4], dtype=np.float)) if self.use_kld: query_label = np.zeros(rpn_rois.shape[0]) query_label_mask = 0 bbox_label = np.zeros(rpn_rois.shape[0]) # keep_inds = [] # 找出 query = 1 的 gt_box 的 index query_gt_ind = 0 query_overlaps = overlaps[:, query_gt_ind].reshape(-1) if self.use_kld: # kld: 根据 iou 设置权重 if query_overlaps.max() >= 0.5: query_label_mask = 1 query_inds = np.where(query_overlaps >= cfg.THRESHOLD)[0] for ind in query_inds: query_label[ind] = query_overlaps[ind] if query_label.sum() == 0: print(query_overlaps.max()) query_label = query_label / float(query_label.sum()) else: # softmax if query_overlaps.max() >= 0.5: query_label = int(query_overlaps.argmax()) else: query_label = -1 rois = rpn_rois gt_assignment = overlaps.argmax(axis=1) gt_target_boxes = gt_boxes[gt_assignment, :4] bbox_label[np.where(overlaps.max(axis=1) >= 0.5)[0]] = 2 if query_overlaps.max() >= 0.5: query_inds = np.where(query_overlaps >= cfg.THRESHOLD)[0] bbox_label[query_inds] = 1 gt_target_boxes[query_inds] = gt_boxes[query_gt_ind, :4] bbox_target_data = self.compute_targets(rois, gt_target_boxes, bbox_label) query_bbox_targets, query_bbox_inside_weights = self.get_query_bbox_regression_labels( bbox_target_data) query_bbox_outside_weights = np.array( query_bbox_inside_weights > 0).astype(np.float32) return query_label, query_label_mask, query_bbox_targets, query_bbox_inside_weights, query_bbox_outside_weights def get_spt_feat(self, bbox, img_shape): spt_feat = np.zeros((bbox.shape[0], 5), dtype=np.float) spt_feat[:, 0] = bbox[:, 0] / float(img_shape[1]) spt_feat[:, 1] = bbox[:, 1] / float(img_shape[0]) spt_feat[:, 2] = bbox[:, 2] / float(img_shape[1]) spt_feat[:, 3] = bbox[:, 3] / float(img_shape[0]) spt_feat[:, 4] = (bbox[:, 2] - bbox[:, 0]) * ( bbox[:, 3] - bbox[:, 1]) / float(img_shape[0] * img_shape[1]) return spt_feat
def get_vocab_size(): qdic_dir = cfg.QUERY_DIR # osp.join(cfg.DATA_DIR, cfg.IMDB_NAME, 'query_dict') qdic = Dictionary(qdic_dir) qdic.load() vocab_size = qdic.size() return vocab_size
class DataProvider(object): def __init__(self, data_split, batchsize=1): print 'init DataProvider for %s : %s : %s' % (cfg.IMDB_NAME, cfg.PROJ_NAME, data_split) self.is_ss = cfg.FEAT_TYPE == 'ss' self.ss_box_dir = cfg.SS_BOX_DIR self.ss_feat_dir = cfg.SS_FEAT_DIR self.feat_type = cfg.FEAT_TYPE if 'refcoco' in cfg.IMDB_NAME or cfg.IMDB_NAME == 'refclef': self.is_mscoco_prefix = True else: self.is_mscoco_prefix = False self.use_kld = cfg.USE_KLD # self.mscoco_prefix = cfg.MSCOCO_PREFIX self.rpn_topn = cfg.RPN_TOPN if self.is_ss: self.bottomup_feat_dim = cfg.SS_FEAT_DIM else: self.bottomup_feat_dim = cfg.BOTTOMUP_FEAT_DIM self.query_maxlen = cfg.QUERY_MAXLEN # self.data_paths = cfg.DATA_PATHS self.image_ext = '.jpg' data_splits = data_split.split(cfg.SPLIT_TOK) if 'train' in data_splits: self.mode = 'train' else: self.mode = 'test' self.batchsize = batchsize self.image_dir = cfg.IMAGE_DIR self.feat_dir = cfg.FEAT_DIR self.dict_dir = cfg.QUERY_DIR #osp.join(cfg.DATA_DIR, cfg.IMDB_NAME, 'query_dict') self.anno = self.load_data(data_splits) self.qdic = Dictionary(self.dict_dir) self.qdic.load() self.index = 0 self.batch_len = None self.num_query = len(self.anno) def get_image_ids(self): qid_list = self.get_query_ids() iid_list = set() for qid in qid_list: iid_list.add(self.anno[qid]['iid']) return list(iid_list) def get_query_ids(self): return self.anno.keys() def get_num_query(self): return self.num_query def load_data(self, data_splits): anno = {} for data_split in data_splits: #data_path = osp.join(cfg.DATA_DIR, cfg.IMDB_NAME, 'format_%s.pkl'%str(data_split)) data_path = cfg.ANNO_PATH%str(data_split) t_anno = load(data_path) anno.update(t_anno) return anno def get_vocabsize(self): return self.qdic.size() def get_iid(self, qid): return self.anno[qid]['iid'] def get_img_path(self, iid): if self.is_mscoco_prefix: return os.path.join(self.image_dir, 'COCO_train2014_' + str(iid).zfill(12) + self.image_ext) else: return os.path.join(self.image_dir, str(iid) + self.image_ext) def str2list(self, qstr, query_maxlen): q_list = qstr.split() qvec = np.zeros(query_maxlen, dtype=np.int64) cvec = np.zeros(query_maxlen, dtype=np.int64) for i,_ in enumerate(xrange(query_maxlen)): if i < query_maxlen - len(q_list): cvec[i] = 0 else: w = q_list[i-(query_maxlen-len(q_list))] # is the word in the vocabulary? # if self.qdic.has_token(w) is False: # w = cfg.UNK_WORD #'<unk>' qvec[i] = self.qdic.lookup(w) cvec[i] = 0 if i == query_maxlen - len(q_list) else 1 return qvec, cvec def load_ss_box(self, ss_box_path): boxes = np.loadtxt(ss_box_path) if len(boxes) == 0: raise Exception("boxes is None!") boxes = boxes - 1 boxes[:,[0,1]] = boxes[:,[1,0]] boxes[:,[2,3]] = boxes[:,[3,2]] return boxes def get_topdown_feat(self, iid): try: if self.is_ss: img_path = self.get_img_path(iid) im = skimage.io.imread(img_path) img_h = im.shape[0] img_w = im.shape[1] feat_path = os.path.join(self.ss_feat_dir, str(iid) + '.npz') ss_box_path = os.path.join(self.ss_box_dir, str(iid) + '.txt') bbox = self.load_ss_box(ss_box_path) num_bbox = bbox.shape[0] img_feat = np.transpose(np.load(feat_path)['x'], (1,0)) else: if self.is_mscoco_prefix: feat_path = os.path.join(self.feat_dir, 'COCO_train2014_' + str(iid).zfill(12) + self.image_ext + '.npz') else: feat_path = os.path.join(self.feat_dir, str(iid) + self.image_ext + '.npz') feat_dict = np.load(feat_path) img_feat = feat_dict['x'] num_bbox = feat_dict['num_bbox'] bbox = feat_dict['bbox'] img_h = feat_dict['image_h'] img_w = feat_dict['image_w'] return img_feat, num_bbox, bbox, (img_h, img_w) except Exception, e: print e raise Exception("UnkownError")