preds = [preds[1], preds[2]] return preds preprocess_input = preprocess_input # Init drawer and xai_tool drawer = Drawer() xai_tool = XAITool(model, input_size, decode, preprocess_input) cap = cv2.VideoCapture(0) while (True): ret_run, frame = cap.read() xai_dict = xai_tool.vidCapRun(frame, -1) if ('predictions' in xai_dict): drawer.singleThread(frame, xai_dict['heatmap'], xai_dict['activations'], xai_tool.layers[-1], -1, xai_dict['predictions']) else: drawer.singleThread(frame, xai_dict['heatmap'], xai_dict['activations'], xai_tool.layers[-1], -1) # TEMP # cap = cv2.VideoCapture(0) # ret_run, frame = cap.read() # cv2.imshow('hello', frame) # cv2.waitKey(100) # # testing custom models # from keras.models import load_model # import keras # cus_model = load_model('models/TIL_Pose_detector.h5') # input_size = (224, 224)
decode = createDecoder(target_labels) # Init classes drawer = Drawer() cap = cv2.VideoCapture(0) xai_tool = XVisTool(model, input_size, decoder_func=decode, preprocess_img_func=preprocess_input) # Showing the default ori_img = xai_tool.setStillImg(img_path) xai_dict = xai_tool.stillImgRun(-1) layers = xai_tool.layers drawer.singleThread(ori_img, xai_dict['heatmap'], xai_dict['activations'], [layers[-1], -1], xai_dict['predictions']) cv2.imshow('XVis Single', drawer.mask) cv2.waitKey(100) while (True): print('These are the layers you can select: ') for i, layer in enumerate(layers): print('Layer ({}): {}'.format(i + 1, layer)) selected_layer = getSelectedLayer(layers) xai_dict = xai_tool.stillImgRun(selected_layer) drawer.singleThread(ori_img, xai_dict['heatmap'], xai_dict['activations'], [layers[selected_layer], selected_layer], xai_dict['predictions']) cv2.imshow('XVis Single', drawer.mask) cv2.waitKey(100)