Esempio n. 1
0
    def __init__(self, eval_config, logger=None):
        if logger is None:
            logger = logging.getLogger(__name__)
        self.logger = logger
        self.feat_vis = eval_config['feat_vis']
        self.thresh = eval_config['thresh']
        self.nms = eval_config['nms']
        self.class_agnostic = eval_config['class_agnostic']
        self.classes = ['bg'] + eval_config['classes']
        self.n_classes = len(self.classes)
        # self.batch_size = eval_config['batch_size']

        self.eval_out = eval_config['eval_out']
        self.test_type = eval_config['test_type']

        # image visualizer for any dataset
        image_dir = '/data/object/training/image_2'
        result_dir = './results/data'
        save_dir = 'results/images'
        calib_dir = '/data/object/training/calib'
        label_dir = None
        calib_file = None
        self.visualizer = ImageVisualizer(image_dir,
                                          result_dir,
                                          label_dir=label_dir,
                                          calib_dir=calib_dir,
                                          calib_file=calib_file,
                                          online=False,
                                          save_dir=save_dir)
Esempio n. 2
0
def test_corners_3d_coder():

    # import ipdb
    # ipdb.set_trace()
    coder_config = {'type': constants.KEY_CORNERS_3D}
    bbox_coder = bbox_coders.build(coder_config)

    dataset = build_dataset()
    sample = dataset[0]
    label_boxes_3d = torch.from_numpy(sample[constants.KEY_LABEL_BOXES_3D])
    label_boxes_2d = torch.from_numpy(sample[constants.KEY_LABEL_BOXES_2D])
    p2 = torch.from_numpy(sample[constants.KEY_STEREO_CALIB_P2])
    proposals = torch.from_numpy(sample[constants.KEY_LABEL_BOXES_2D])
    num_instances = torch.from_numpy(sample[constants.KEY_NUM_INSTANCES])

    # ry = compute_ray_angle(label_boxes_3d[:, :3])
    # label_boxes_3d[:, -1] += ry

    label_boxes_3d = torch.stack(1 * [label_boxes_3d[:num_instances]], dim=0)
    label_boxes_2d = torch.stack(1 * [label_boxes_2d[:num_instances]], dim=0)
    proposals = torch.stack(1 * [proposals[:num_instances]], dim=0)
    p2 = torch.stack(1 * [p2], dim=0)

    # import ipdb
    # ipdb.set_trace()
    # label_boxes_3d[:, :, -1] = 0

    encoded_corners_3d = bbox_coder.encode_batch(label_boxes_3d,
                                                 label_boxes_2d, p2)
    #  torch.cat([encoded_corners_2d, ])
    num_boxes = encoded_corners_3d.shape[1]
    batch_size = encoded_corners_3d.shape[0]

    decoded_corners_3d = bbox_coder.decode_batch(
        encoded_corners_3d.view(batch_size, num_boxes, -1), proposals, p2)

    decoded_corners_2d = geometry_utils.torch_points_3d_to_points_2d(
        decoded_corners_3d[0].view(-1, 3), p2[0]).view(-1, 8, 2)
    decoded_corners_2d = decoded_corners_2d.cpu().detach().numpy()

    image_path = sample[constants.KEY_IMAGE_PATH]
    image_dir = '/data/object/training/image_2'
    result_dir = './results/data'
    save_dir = 'results/images'
    calib_dir = '/data/object/training/calib'
    label_dir = None
    calib_file = None
    visualizer = ImageVisualizer(image_dir,
                                 result_dir,
                                 label_dir=label_dir,
                                 calib_dir=calib_dir,
                                 calib_file=calib_file,
                                 online=False,
                                 save_dir=save_dir)
    visualizer.render_image_corners_2d(image_path, decoded_corners_2d)
Esempio n. 3
0
def main():

    normal_mean = np.asarray([0.485, 0.456, 0.406])
    normal_van = np.asarray([0.229, 0.224, 0.225])
    dataset = build_dataset()
    image_dir = '/data/object/training/image_2'
    result_dir = './results/data'
    save_dir = 'results/images'
    calib_dir = '/data/object/training/calib'
    label_dir = None
    calib_file = None
    visualizer = ImageVisualizer(image_dir,
                                 result_dir,
                                 label_dir=label_dir,
                                 calib_dir=calib_dir,
                                 calib_file=calib_file,
                                 online=True,
                                 save_dir=save_dir)
    for sample in dataset:
        label_boxes_3d = sample['gt_boxes_3d']
        label_boxes_2d = sample['gt_boxes']
        label_classes = sample['gt_labels']
        p2 = torch.from_numpy(sample['p2'])
        image_path = sample['img_name']

        label_boxes_3d = torch.cat([
            label_boxes_3d[:, 3:6], label_boxes_3d[:, :3], label_boxes_3d[:,
                                                                          6:]
        ],
                                   dim=-1)
        corners_3d = geometry_utils.torch_boxes_3d_to_corners_3d(
            label_boxes_3d)
        image = sample['img'].permute(1, 2, 0).cpu().detach().numpy()
        image = image.copy()
        image = image * normal_van + normal_mean
        # import ipdb
        # ipdb.set_trace()
        corners_3d = corners_3d.cpu().detach().numpy()
        visualizer.render_image_corners_2d(image_path,
                                           image,
                                           corners_3d=corners_3d,
                                           p2=p2)
Esempio n. 4
0
    def __init__(self, args):
        # first setup logger
        self.logger = setup_logger()
        self.args = args

        self.config = self.generate_config(args, self.logger)

        self.data_config = self.config['eval_data_config']

        self.dataset_config = self.data_config['dataset_config']

        self.classes = ['bg'] + self.dataset_config['classes']
        self.n_classes = len(self.classes)

        colors = []
        for i in range(self.n_classes):
            colors.append(self.get_random_color())

        self.eval_config = self.config['eval_config']
        self.thresh = self.eval_config['thresh']
        self.nms = self.eval_config['nms']

        image_dir = '/data/object/training/image_2'
        result_dir = './results/data'
        save_dir = 'results/images'
        calib_dir = '/data/object/training/calib'
        label_dir = None
        calib_file = None
        self.visualizer = ImageVisualizer(
            image_dir,
            result_dir,
            label_dir=label_dir,
            calib_dir=calib_dir,
            calib_file=calib_file,
            online=False,
            save_dir=save_dir)

        self.visualizer.colors = colors
        self.visualizer.classes = self.classes
Esempio n. 5
0
def generate_visualizer():
    image_dir = '/data/object/training/image_2'
    result_dir = './results/data'
    save_dir = 'results/optimized'
    calib_dir = '/data/object/training/calib'
    label_dir = None
    #  label_dir = '/data/object/training/label_2'
    calib_file = None
    visualizer = ImageVisualizer(image_dir,
                                 result_dir,
                                 label_dir=label_dir,
                                 calib_dir=calib_dir,
                                 calib_file=calib_file,
                                 online=False,
                                 save_dir=save_dir)
    return visualizer
Esempio n. 6
0
def build_visualizer():
    image_dir = '/data/object/training/image_2'
    result_dir = './results/data'
    save_dir = 'results/images'
    calib_dir = '/data/object/training/calib'
    label_dir = None
    calib_file = None
    visualizer = ImageVisualizer(
        image_dir,
        result_dir,
        label_dir=label_dir,
        calib_dir=calib_dir,
        calib_file=calib_file,
        online=True,
        save_dir=save_dir)
    return visualizer
Esempio n. 7
0
def test_mobileye_coder():

    coder_config = {'type': constants.KEY_MOBILEYE}
    bbox_coder = bbox_coders.build(coder_config)

    dataset = build_dataset('kitti')
    image_dir = '/data/object/training/image_2'
    result_dir = './results/data'
    save_dir = 'results/images'
    calib_dir = '/data/object/training/calib'
    label_dir = None
    calib_file = None
    visualizer = ImageVisualizer(image_dir,
                                 result_dir,
                                 label_dir=label_dir,
                                 calib_dir=calib_dir,
                                 calib_file=calib_file,
                                 online=False,
                                 save_dir=save_dir)
    for sample in dataset:
        label_boxes_3d = torch.from_numpy(sample[constants.KEY_LABEL_BOXES_3D])
        label_boxes_2d = torch.from_numpy(sample[constants.KEY_LABEL_BOXES_2D])
        p2 = torch.from_numpy(sample[constants.KEY_STEREO_CALIB_P2])
        proposals = torch.from_numpy(sample[constants.KEY_LABEL_BOXES_2D])
        num_instances = torch.from_numpy(sample[constants.KEY_NUM_INSTANCES])
        image_info = torch.from_numpy(sample[constants.KEY_IMAGE_INFO])

        label_boxes_3d = torch.stack(1 * [label_boxes_3d[:num_instances]],
                                     dim=0)
        label_boxes_2d = torch.stack(1 * [label_boxes_2d[:num_instances]],
                                     dim=0)
        proposals = torch.stack(1 * [proposals[:num_instances]], dim=0)
        image_info = torch.stack(1 * [image_info], dim=0)
        p2 = torch.stack(1 * [p2], dim=0)

        encoded_corners_2d = bbox_coder.encode_batch(label_boxes_3d,
                                                     label_boxes_2d, p2,
                                                     image_info,
                                                     label_boxes_2d)
        #  torch.cat([encoded_corners_2d, ])
        # num_boxes = encoded_corners_2d.shape[1]
        # batch_size = encoded_corners_2d.shape[0]
        # center_depth = encoded_corners_2d[:, :, -1:]
        # encoded_corners_2d = encoded_corners_2d[:, :, :-1].view(
        # batch_size, num_boxes, 8, 4)

        # encoded_visibility = torch.zeros_like(encoded_corners_2d[:, :, :, :2])
        # visibility = encoded_corners_2d[:, :, :, -1:].long()
        # row = torch.arange(0, visibility.numel()).type_as(visibility)
        # encoded_visibility.view(-1, 2)[row, visibility.view(-1)] = 1
        # encoded_corners_2d = torch.cat(
        # [encoded_corners_2d[:, :, :, :3], encoded_visibility], dim=-1)

        # encoded_corners_2d = torch.cat(
        # [encoded_corners_2d.view(batch_size, num_boxes, -1), center_depth],
        # dim=-1)

        decoded_corners_2d = bbox_coder.decode_batch(encoded_corners_2d,
                                                     proposals)

        decoded_corners_2d = decoded_corners_2d.cpu().detach().numpy()

        # import ipdb
        # ipdb.set_trace()
        image_path = sample[constants.KEY_IMAGE_PATH]
        visualizer.render_image_corners_2d(image_path,
                                           corners_2d=decoded_corners_2d[0],
                                           p2=p2[0])
Esempio n. 8
0
def test_keypoint_hm_coder():
    coder_config = {'type': constants.KEY_KEYPOINTS_HEATMAP}
    bbox_coder = bbox_coders.build(coder_config)

    dataset = build_dataset(dataset_type='keypoint_kitti')
    sample = dataset[0]
    label_boxes_3d = torch.from_numpy(sample[constants.KEY_LABEL_BOXES_3D])
    label_boxes_2d = torch.from_numpy(sample[constants.KEY_LABEL_BOXES_2D])
    p2 = torch.from_numpy(sample[constants.KEY_STEREO_CALIB_P2])
    proposals = torch.from_numpy(sample[constants.KEY_LABEL_BOXES_2D])
    num_instances = torch.from_numpy(sample[constants.KEY_NUM_INSTANCES])
    keypoints = sample[constants.KEY_KEYPOINTS]

    # ry = compute_ray_angle(label_boxes_3d[:, :3])
    # label_boxes_3d[:, -1] += ry

    label_boxes_3d = torch.stack(1 * [label_boxes_3d[:num_instances]], dim=0)
    label_boxes_2d = torch.stack(1 * [label_boxes_2d[:num_instances]], dim=0)
    proposals = torch.stack(1 * [proposals[:num_instances]], dim=0)
    keypoints = torch.stack(1 * [keypoints[:num_instances]], dim=0)
    p2 = torch.stack(1 * [p2], dim=0)

    # label_boxes_3d[:, :, -1] = 0

    # import ipdb
    # ipdb.set_trace()
    encoded_corners_3d = bbox_coder.encode_batch(proposals, keypoints)
    #  torch.cat([encoded_corners_2d, ])
    num_boxes = encoded_corners_3d.shape[1]
    batch_size = encoded_corners_3d.shape[0]

    keypoint_heatmap = encoded_corners_3d.view(batch_size, num_boxes, 8,
                                               -1)[..., :-1]
    # resolution = bbox_coder.resolution
    # keypoint_heatmap = torch.zeros((batch_size * num_boxes * 8, resolution * resolution))
    # row = torch.arange(keypoint.numel()).type_as(keypoint)
    # keypoint_heatmap[row, keypoint.view(-1)] = 1
    # keypoint_heatmap = torch.stack([keypoint_heatmap] * 3, dim=1)

    # reshape before decode
    keypoint_heatmap = keypoint_heatmap.contiguous().view(
        batch_size, num_boxes, -1)

    decoded_corners_2d = bbox_coder.decode_batch(proposals, keypoint_heatmap)

    decoded_corners_2d = decoded_corners_2d.cpu().detach().numpy()

    image_path = sample[constants.KEY_IMAGE_PATH]
    image_dir = '/data/object/training/image_2'
    result_dir = './results/data'
    save_dir = 'results/images'
    calib_dir = '/data/object/training/calib'
    label_dir = None
    calib_file = None
    visualizer = ImageVisualizer(image_dir,
                                 result_dir,
                                 label_dir=label_dir,
                                 calib_dir=calib_dir,
                                 calib_file=calib_file,
                                 online=False,
                                 save_dir=save_dir)
    # import ipdb
    # ipdb.set_trace()
    visualizer.render_image_corners_2d(image_path,
                                       corners_2d=decoded_corners_2d[0])
Esempio n. 9
0
class Tester(object):
    def __init__(self, eval_config, logger=None):
        if logger is None:
            logger = logging.getLogger(__name__)
        self.logger = logger
        self.feat_vis = eval_config['feat_vis']
        self.thresh = eval_config['thresh']
        self.nms = eval_config['nms']
        self.class_agnostic = eval_config['class_agnostic']
        self.classes = ['bg'] + eval_config['classes']
        self.n_classes = len(self.classes)
        # self.batch_size = eval_config['batch_size']

        self.eval_out = eval_config['eval_out']
        self.test_type = eval_config['test_type']

        # image visualizer for any dataset
        image_dir = '/data/object/training/image_2'
        result_dir = './results/data'
        save_dir = 'results/images'
        calib_dir = '/data/object/training/calib'
        label_dir = None
        calib_file = None
        self.visualizer = ImageVisualizer(image_dir,
                                          result_dir,
                                          label_dir=label_dir,
                                          calib_dir=calib_dir,
                                          calib_file=calib_file,
                                          online=False,
                                          save_dir=save_dir)

    def _generate_label_path(self, image_path):
        image_name = os.path.basename(image_path)
        sample_name = os.path.splitext(image_name)[0]
        label_name = sample_name + '.txt'
        return os.path.join(self.eval_out, label_name)

    def save_mono_3d_dets(self, dets, label_path):
        res_str = []
        kitti_template = '{} -1 -1 -10 {:.3f} {:.3f} {:.3f} {:.3f} {:.3f} {:.3f} {:.3f} {:.3f} {:.3f} {:.3f} {:.3f} {:.8f}'
        # kitti_template = '{} -1 -1 -10 {:.3f} {:.3f} {:.3f} {:.3f} -1 -1 -1 -1000 -1000 -1000 -10 {:.8f}'
        with open(label_path, 'w') as f:
            for cls_ind, dets_per_classes in enumerate(dets):
                if self.classes[cls_ind] == 'Tram':
                    continue
                for det in dets_per_classes:
                    # xmin, ymin, xmax, ymax, cf, l, h, w, ry, x, y, z = det
                    xmin, ymin, xmax, ymax, cf, h, w, l, x, y, z, ry = det
                    res_str.append(
                        kitti_template.format(self.classes[cls_ind], xmin,
                                              ymin, xmax, ymax, h, w, l, x, y,
                                              z, ry, cf))
                    # xmin, ymin, xmax, ymax, cf, h, w, l, x, y, z, alpha = det
                    # res_str.append(
                # kitti_template.format(self.classes[cls_ind], xmin,
                # ymin, xmax, ymax, h, w, l, x, y,
                # z, alpha, cf))
            f.write('\n'.join(res_str))

    def save_dets(self, dets, label_path, image_path):
        res_str = []
        # kitti_template = '{} -1 -1 -10 {:.3f} {:.3f} {:.3f} {:.3f} {:.3f} {:.3f} {:.3f} {:.3f} {:.3f} {:.3f} {:.3f} {:.8f}'
        kitti_template = '{} -1 -1 -10 {:.3f} {:.3f} {:.3f} {:.3f} -1 -1 -1 -1000 -1000 -1000 -10 {:.8f}'
        with open(label_path, 'w') as f:
            for cls_ind, dets_per_classes in enumerate(dets):
                for det in dets_per_classes:
                    xmin, ymin, xmax, ymax, cf = det
                    res_str.append(
                        kitti_template.format(self.classes[cls_ind], xmin,
                                              ymin, xmax, ymax, cf))
                    # xmin, ymin, xmax, ymax, cf, h, w, l, x, y, z, alpha = det
                    # res_str.append(
                # kitti_template.format(self.classes[cls_ind], xmin,
                # ymin, xmax, ymax, h, w, l, x, y,
                # z, alpha, cf))
            f.write('\n'.join(res_str))

        # image = self.visualizer.parse_image(image_path)
        # self.visualizer.render_image_2d(image, boxes_2d, label_classes)

    def test_corners_3d(self, dataloader, model, logger):
        self.logger.info('Start testing')
        num_samples = len(dataloader)

        if self.feat_vis:
            # enable it before forward pass
            model.enable_feat_vis()
        end_time = 0

        for step, data in enumerate(dataloader):
            # start_time = time.time()
            data = common.to_cuda(data)
            image_path = data[constants.KEY_IMAGE_PATH]

            with torch.no_grad():
                prediction, _, _ = model(data)
            # duration_time = time.time() - start_time

            if self.feat_vis:
                featmaps_dict = model.get_feat()
                from utils.visualizer import FeatVisualizer
                feat_visualizer = FeatVisualizer()
                feat_visualizer.visualize_maps(featmaps_dict)

            # initialize dets for each classes
            # dets = [[] for class_ind in range(self.n_classes)]

            scores = prediction[constants.KEY_CLASSES]
            boxes_2d = prediction[constants.KEY_BOXES_2D]
            #  dims = prediction[constants.KEY_DIMS]
            corners_2d = prediction[constants.KEY_CORNERS_2D]
            #  import ipdb
            #  ipdb.set_trace()
            p2 = data[constants.KEY_STEREO_CALIB_P2_ORIG]

            # rcnn_3d = prediction['rcnn_3d']
            batch_size = scores.shape[0]
            scores = scores.view(-1, self.n_classes)
            new_scores = torch.zeros_like(scores)
            _, scores_argmax = scores.max(dim=-1)
            row = torch.arange(0, scores_argmax.numel()).type_as(scores_argmax)
            new_scores[row, scores_argmax] = scores[row, scores_argmax]
            scores = new_scores.view(batch_size, -1, self.n_classes)

            #  if step == 6:
            #  import ipdb
            #  ipdb.set_trace()

            for batch_ind in range(batch_size):
                boxes_2d_per_img = boxes_2d[batch_ind]
                scores_per_img = scores[batch_ind]
                #  dims_per_img = dims[batch_ind]
                corners_2d_per_img = corners_2d[batch_ind]
                p2_per_img = p2[batch_ind]

                num_cols = corners_2d.shape[-1]
                dets = [np.zeros((0, 8, num_cols), dtype=np.float32)]
                dets_2d = [np.zeros((0, 4), dtype=np.float32)]

                for class_ind in range(1, self.n_classes):
                    # cls thresh
                    inds = torch.nonzero(
                        scores_per_img[:, class_ind] > self.thresh).view(-1)
                    threshed_scores_per_img = scores_per_img[inds, class_ind]
                    if inds.numel() > 0:
                        # if self.class_agnostic:
                        threshed_boxes_2d_per_img = boxes_2d_per_img[inds]
                        #  threshed_dims_per_img = dims_per_img[inds]
                        threshed_corners_2d_per_img = corners_2d_per_img[inds]
                        # threshed_rcnn_3d_per_img = rcnn_3d_per_img[inds]
                        # else:
                        # threshed_boxes_2d_per_img = boxes_2d_per_img[
                        # inds, class_ind * 4:class_ind * 4 + 4]
                        # concat boxes and scores
                        threshed_dets_per_img = torch.cat(
                            [
                                threshed_boxes_2d_per_img,
                                threshed_scores_per_img.unsqueeze(-1),
                                #  threshed_dims_per_img,
                            ],
                            dim=-1)

                        # sort by scores
                        _, order = torch.sort(threshed_scores_per_img, 0, True)
                        threshed_dets_per_img = threshed_dets_per_img[order]
                        threshed_corners_2d_per_img = threshed_corners_2d_per_img[
                            order]

                        # nms
                        keep = nms(threshed_dets_per_img[:, :4],
                                   threshed_dets_per_img[:, 4],
                                   self.nms).view(-1).long()
                        nms_dets_per_img = threshed_dets_per_img[keep].detach(
                        ).cpu().numpy()
                        nms_corners_2d_per_img = threshed_corners_2d_per_img[
                            keep].detach().cpu().numpy()

                        dets.append(nms_corners_2d_per_img)
                        dets_2d.append(nms_dets_per_img[:, :4])
                    else:
                        dets.append(
                            np.zeros((0, 8, num_cols), dtype=np.float32))
                        dets_2d.append(np.zeros((0, 4)))

                # import ipdb
                # ipdb.set_trace()
                corners = np.concatenate(dets, axis=0)
                dets_2d = np.concatenate(dets_2d, axis=0)
                corners_2d = None
                corners_3d = None
                if num_cols == 3:
                    corners_3d = corners
                else:
                    corners_2d = corners

                self.visualizer.render_image_corners_2d(
                    image_path[0],
                    boxes_2d=dets_2d,
                    corners_2d=corners_2d,
                    corners_3d=corners_3d,
                    p2=p2_per_img.cpu().numpy())

                duration_time = time.time() - end_time
                #  label_path = self._generate_label_path(image_path[batch_ind])
                #  self.save_mono_3d_dets(dets, label_path)
                sys.stdout.write('\r{}/{},duration: {}'.format(
                    step + 1, num_samples, duration_time))
                sys.stdout.flush()

                end_time = time.time()

    def test_3d(self, dataloader, model, logger):
        self.logger.info('Start testing')
        num_samples = len(dataloader)

        if self.feat_vis:
            # enable it before forward pass
            model.enable_feat_vis()
        end_time = 0

        for step, data in enumerate(dataloader):
            # start_time = time.time()
            data = common.to_cuda(data)
            image_path = data[constants.KEY_IMAGE_PATH]

            with torch.no_grad():
                prediction, _, _ = model(data)
            # duration_time = time.time() - start_time

            if self.feat_vis:
                featmaps_dict = model.get_feat()
                from utils.visualizer import FeatVisualizer
                feat_visualizer = FeatVisualizer()
                feat_visualizer.visualize_maps(featmaps_dict)

            # initialize dets for each classes
            # dets = [[] for class_ind in range(self.n_classes)]
            dets = [[]]

            scores = prediction[constants.KEY_CLASSES]
            boxes_2d = prediction[constants.KEY_BOXES_2D]
            dims = prediction[constants.KEY_DIMS]
            orients = prediction[constants.KEY_ORIENTS_V2]
            p2 = data[constants.KEY_STEREO_CALIB_P2_ORIG]

            # rcnn_3d = prediction['rcnn_3d']
            batch_size = scores.shape[0]
            scores = scores.view(-1, self.n_classes)
            new_scores = torch.zeros_like(scores)
            _, scores_argmax = scores.max(dim=-1)
            row = torch.arange(0, scores_argmax.numel()).type_as(scores_argmax)
            new_scores[row, scores_argmax] = scores[row, scores_argmax]
            scores = new_scores.view(batch_size, -1, self.n_classes)

            #  if step == 6:
            #  import ipdb
            #  ipdb.set_trace()

            for batch_ind in range(batch_size):
                boxes_2d_per_img = boxes_2d[batch_ind]
                scores_per_img = scores[batch_ind]
                dims_per_img = dims[batch_ind]
                orients_per_img = orients[batch_ind]
                p2_per_img = p2[batch_ind]
                # rcnn_3d_per_img = rcnn_3d[batch_ind]
                for class_ind in range(1, self.n_classes):
                    # cls thresh
                    inds = torch.nonzero(
                        scores_per_img[:, class_ind] > self.thresh).view(-1)
                    threshed_scores_per_img = scores_per_img[inds, class_ind]
                    if inds.numel() > 0:
                        # if self.class_agnostic:
                        threshed_boxes_2d_per_img = boxes_2d_per_img[inds]
                        threshed_dims_per_img = dims_per_img[inds]
                        threshed_orients_per_img = orients_per_img[inds]
                        # threshed_rcnn_3d_per_img = rcnn_3d_per_img[inds]
                        # else:
                        # threshed_boxes_2d_per_img = boxes_2d_per_img[
                        # inds, class_ind * 4:class_ind * 4 + 4]
                        # concat boxes and scores
                        threshed_dets_per_img = torch.cat([
                            threshed_boxes_2d_per_img,
                            threshed_scores_per_img.unsqueeze(-1),
                            threshed_dims_per_img,
                            threshed_orients_per_img.unsqueeze(-1)
                        ],
                                                          dim=-1)

                        # sort by scores
                        _, order = torch.sort(threshed_scores_per_img, 0, True)
                        threshed_dets_per_img = threshed_dets_per_img[order]
                        # threshed_rcnn_3d_per_img = threshed_rcnn_3d_per_img[order]

                        # nms
                        keep = nms(threshed_dets_per_img[:, :4],
                                   threshed_dets_per_img[:, 4],
                                   self.nms).view(-1).long()
                        nms_dets_per_img = threshed_dets_per_img[keep].detach(
                        ).cpu().numpy()
                        # nms_rcnn_3d_per_img = threshed_rcnn_3d_per_img[keep].detach().cpu().numpy()

                        # calculate location
                        location = geometry_utils.calc_location(
                            nms_dets_per_img[:, 5:8], nms_dets_per_img[:, :5],
                            nms_dets_per_img[:, 8],
                            p2_per_img.cpu().numpy())
                        # import ipdb
                        # ipdb.set_trace()
                        # location, _ = mono_3d_postprocess_bbox(
                        # nms_rcnn_3d_per_img, nms_dets_per_img[:, :5],
                        # p2_per_img.cpu().numpy())
                        nms_dets_per_img = np.concatenate([
                            nms_dets_per_img[:, :5], nms_dets_per_img[:, 5:8],
                            location, nms_dets_per_img[:, -1:]
                        ],
                                                          axis=-1)
                        # nms_dets_per_img = np.concatenate(
                        # [nms_dets_per_img[:, :5], location], axis=-1)

                        dets.append(nms_dets_per_img)
                    else:
                        dets.append([])

                duration_time = time.time() - end_time
                label_path = self._generate_label_path(image_path[batch_ind])
                self.save_mono_3d_dets(dets, label_path)
                sys.stdout.write('\r{}/{},duration: {}'.format(
                    step + 1, num_samples, duration_time))
                sys.stdout.flush()

                end_time = time.time()

    def test_2d(self, dataloader, model, logger):
        self.logger.info('Start testing')
        num_samples = len(dataloader)

        if self.feat_vis:
            # enable it before forward pass
            model.enable_feat_vis()
        end_time = 0

        for step, data in enumerate(dataloader):
            # start_time = time.time()
            data = common.to_cuda(data)
            image_path = data[constants.KEY_IMAGE_PATH]

            with torch.no_grad():
                prediction, _, _ = model(data)
            # duration_time = time.time() - start_time

            if self.feat_vis:
                featmaps_dict = model.get_feat()
                from utils.visualizer import FeatVisualizer
                feat_visualizer = FeatVisualizer()
                feat_visualizer.visualize_maps(featmaps_dict)

            # initialize dets for each classes
            # dets = [[] for class_ind in range(self.n_classes)]
            dets = [[]]

            scores = prediction[constants.KEY_CLASSES]
            boxes_2d = prediction[constants.KEY_BOXES_2D]

            batch_size = scores.shape[0]
            scores = scores.view(-1, self.n_classes)
            new_scores = torch.zeros_like(scores)
            _, scores_argmax = scores.max(dim=-1)
            row = torch.arange(0, scores_argmax.numel()).type_as(scores_argmax)
            new_scores[row, scores_argmax] = scores[row, scores_argmax]
            scores = new_scores.view(batch_size, -1, self.n_classes)

            #  if step == 6:
            #  import ipdb
            #  ipdb.set_trace()

            for batch_ind in range(batch_size):
                boxes_2d_per_img = boxes_2d[batch_ind]
                scores_per_img = scores[batch_ind]
                for class_ind in range(1, self.n_classes):
                    # cls thresh
                    inds = torch.nonzero(
                        scores_per_img[:, class_ind] > self.thresh).view(-1)
                    threshed_scores_per_img = scores_per_img[inds, class_ind]
                    if inds.numel() > 0:
                        # if self.class_agnostic:
                        threshed_boxes_2d_per_img = boxes_2d_per_img[inds]
                        # else:
                        # threshed_boxes_2d_per_img = boxes_2d_per_img[
                        # inds, class_ind * 4:class_ind * 4 + 4]
                        # concat boxes and scores
                        threshed_dets_per_img = torch.cat([
                            threshed_boxes_2d_per_img,
                            threshed_scores_per_img.unsqueeze(-1),
                        ],
                                                          dim=-1)

                        # sort by scores
                        _, order = torch.sort(threshed_scores_per_img, 0, True)
                        threshed_dets_per_img = threshed_dets_per_img[order]

                        # nms
                        keep = nms(threshed_dets_per_img[:, :4],
                                   threshed_dets_per_img[:, 4],
                                   self.nms).view(-1).long()
                        nms_dets_per_img = threshed_dets_per_img[keep].detach(
                        ).cpu().numpy()

                        dets.append(nms_dets_per_img)
                    else:
                        dets.append([])

                duration_time = time.time() - end_time
                label_path = self._generate_label_path(image_path[batch_ind])
                self.save_dets(dets, label_path, image_path[batch_ind])
                sys.stdout.write('\r{}/{},duration: {}'.format(
                    step + 1, num_samples, duration_time))
                sys.stdout.flush()

                end_time = time.time()

    def test_super_nms(self, dataloader, model, logger):
        self.logger.info('Start testing')
        num_samples = len(dataloader)

        if self.feat_vis:
            # enable it before forward pass
            model.enable_feat_vis()
        end_time = 0

        for step, data in enumerate(dataloader):
            # start_time = time.time()
            data = common.to_cuda(data)
            image_path = data[constants.KEY_IMAGE_PATH]

            with torch.no_grad():
                prediction = model(data)
            # duration_time = time.time() - start_time

            if self.feat_vis:
                featmaps_dict = model.get_feat()
                from utils.visualizer import FeatVisualizer
                feat_visualizer = FeatVisualizer()
                feat_visualizer.visualize_maps(featmaps_dict)

            # initialize dets for each classes
            # dets = [[] for class_ind in range(self.n_classes)]
            dets = [[]]

            scores = prediction[constants.KEY_CLASSES]
            boxes_2d = prediction[constants.KEY_BOXES_2D]

            batch_size = scores.shape[0]
            # scores = scores.view(-1, self.n_classes)
            # new_scores = torch.zeros_like(scores)
            # _, scores_argmax = scores.max(dim=-1)
            # row = torch.arange(0, scores_argmax.numel()).type_as(scores_argmax)
            # new_scores[row, scores_argmax] = scores[row, scores_argmax]
            # scores = new_scores.view(batch_size, -1, self.n_classes)

            #  if step == 6:
            #  import ipdb
            #  ipdb.set_trace()

            for batch_ind in range(batch_size):
                boxes_2d_per_img = boxes_2d[batch_ind]
                scores_per_img = scores[batch_ind]
                for class_ind in range(1, self.n_classes):
                    # cls thresh
                    # import ipdb
                    # ipdb.set_trace()
                    inds = torch.nonzero(
                        scores_per_img[:, class_ind] > 0.01).view(-1)
                    threshed_scores_per_img = scores_per_img[inds, class_ind]
                    if inds.numel() > 0:
                        # if self.class_agnostic:
                        threshed_boxes_2d_per_img = boxes_2d_per_img[inds]
                        # else:
                        # threshed_boxes_2d_per_img = boxes_2d_per_img[
                        # inds, class_ind * 4:class_ind * 4 + 4]
                        # concat boxes and scores
                        threshed_dets_per_img = torch.cat([
                            threshed_boxes_2d_per_img,
                            threshed_scores_per_img.unsqueeze(-1),
                        ],
                                                          dim=-1)

                        # sort by scores
                        _, order = torch.sort(threshed_scores_per_img, 0, True)
                        threshed_dets_per_img = threshed_dets_per_img[order]

                        # nms
                        # keep = nms(threshed_dets_per_img[:, :4],
                        # threshed_dets_per_img[:, 4],
                        # self.nms).view(-1).long()
                        keep = box_ops.super_nms(threshed_dets_per_img[:, :4],
                                                 0.8,
                                                 nms_num=3,
                                                 loop_time=2)
                        nms_dets_per_img = threshed_dets_per_img[keep].detach(
                        ).cpu().numpy()

                        dets.append(nms_dets_per_img)
                    else:
                        dets.append([])

                duration_time = time.time() - end_time
                label_path = self._generate_label_path(image_path[batch_ind])
                self.save_dets(dets, label_path)
                sys.stdout.write('\r{}/{},duration: {}'.format(
                    step + 1, num_samples, duration_time))
                sys.stdout.flush()

                end_time = time.time()

    def test(self, dataloader, model, logger):
        test_fn = getattr(self, self.test_type)
        test_fn(dataloader, model, logger)
Esempio n. 10
0
def test_bbox_coder():

    bbox_coder = BBox3DCoder({})
    dataset = build_dataset()

    image_dir = '/data/object/training/image_2'
    result_dir = './results/data'
    save_dir = 'results/images'
    calib_dir = '/data/object/training/calib'
    label_dir = None
    calib_file = None
    visualizer = ImageVisualizer(
        image_dir,
        result_dir,
        label_dir=label_dir,
        calib_dir=calib_dir,
        calib_file=calib_file,
        online=True,
        save_dir=save_dir)

    for sample in dataset:
        mean_dims = torch.from_numpy(sample['mean_dims'][None])
        label_boxes_3d = sample['gt_boxes_3d']
        label_boxes_2d = sample['gt_boxes']
        label_classes = sample['gt_labels']
        p2 = torch.from_numpy(sample['p2'])
        bbox_coder.mean_dims = mean_dims

        encoded_corners_2d = bbox_coder.encode_batch_bbox(
            label_boxes_3d, label_boxes_2d, label_classes, p2)

        # side_lines = encoded_corners_2d[:, 16:20]

        # encoded_corners_2d = torch.cat(
        # [
        # encoded_corners_2d[:, :6], encoded_corners_2d[:, 6:11],
        # encoded_corners_2d[:, 10:11], encoded_corners_2d[:, 11:16],
        # encoded_corners_2d[:, 15:16]
        # ],
        # dim=-1)

        decoded_corners_2d = bbox_coder.decode_batch_bbox(
            encoded_corners_2d, label_boxes_2d, p2)

        boxes_3d = torch.cat(
            [
                decoded_corners_2d[:, 6:9], decoded_corners_2d[:, 3:6],
                decoded_corners_2d[:, -1:]
            ],
            dim=-1)
        # boxes_3d = decoded_corners_2d
        corners_3d = geometry_utils.torch_boxes_3d_to_corners_3d(boxes_3d)

        corners_3d = corners_3d.cpu().detach().numpy()

        # import ipdb
        # ipdb.set_trace()
        # image_path = sample[]
        image_path = sample['img_name']
        image = sample['img'].permute(1, 2, 0).cpu().detach().numpy()
        image = image.copy()
        image = image * normal_van + normal_mean
        # image = None
        # corners_2d = torch.cat([side_lines] * 4, dim=-1).view(-1, 8, 2)
        # corners_2d = corners_2d.cpu().detach().numpy()
        visualizer.render_image_corners_2d(
            image_path, image, corners_3d=corners_3d, p2=p2)
Esempio n. 11
0
class Mono3DInfer(object):
    KITTI_MEAN_DIMS = {
        'Car': [3.88311640418, 1.62856739989, 1.52563191462],
        'Van': [5.06763659, 1.9007158, 2.20532825],
        'Truck': [10.13586957, 2.58549199, 3.2520595],
        'Pedestrian': [0.84422524, 0.66068622, 1.76255119],
        'Person_sitting': [0.80057803, 0.5983815, 1.27450867],
        'Cyclist': [1.76282397, 0.59706367, 1.73698127],
        'Tram': [16.17150617, 2.53246914, 3.53079012],
        'Misc': [3.64300781, 1.54298177, 1.92320313]
    }

    def get_random_color(self):
        color_code = []
        for _ in range(3):
            color_code.append(random.randint(0, 255))
        return color_code

    def __init__(self, args):
        # first setup logger
        self.logger = setup_logger()
        self.args = args

        self.config = self.generate_config(args, self.logger)

        self.data_config = self.config['eval_data_config']

        self.dataset_config = self.data_config['dataset_config']

        self.classes = ['bg'] + self.dataset_config['classes']
        self.n_classes = len(self.classes)

        colors = []
        for i in range(self.n_classes):
            colors.append(self.get_random_color())

        self.eval_config = self.config['eval_config']
        self.thresh = self.eval_config['thresh']
        self.nms = self.eval_config['nms']

        image_dir = '/data/object/training/image_2'
        result_dir = './results/data'
        save_dir = 'results/images'
        calib_dir = '/data/object/training/calib'
        label_dir = None
        calib_file = None
        self.visualizer = ImageVisualizer(
            image_dir,
            result_dir,
            label_dir=label_dir,
            calib_dir=calib_dir,
            calib_file=calib_file,
            online=False,
            save_dir=save_dir)

        self.visualizer.colors = colors
        self.visualizer.classes = self.classes

    def preprocess(self, im, stereo_calib_p2):
        """
            Convert image to data dict
        """

        image_input = im
        image_shape = image_input.size[::-1]
        # no scale now
        image_scale = (1.0, 1.0)
        image_info = image_shape + image_scale

        # as for calib, it can read from different files
        # for each sample or single file for all samples

        transform_sample = {}
        transform_sample[constants.KEY_IMAGE] = image_input
        transform_sample[
            constants.KEY_STEREO_CALIB_P2] = stereo_calib_p2.astype(np.float32)

        # (h,w,scale)
        transform_sample[constants.KEY_IMAGE_INFO] = np.asarray(
            image_info, dtype=np.float32)

        mean_dims = self._generate_mean_dims()
        transform_sample[constants.KEY_MEAN_DIMS] = mean_dims

        transform_sample[constants.KEY_STEREO_CALIB_P2_ORIG] = np.copy(
            transform_sample[constants.KEY_STEREO_CALIB_P2])

        # transform
        transform_config = self.data_config['transform_config']
        transform = transforms.build(transform_config)

        training_sample = transform(transform_sample)

        return training_sample

    def _generate_mean_dims(self):
        mean_dims = []
        for class_type in self.classes[1:]:
            mean_dims.append(self.KITTI_MEAN_DIMS[class_type][::-1])
        return np.stack(mean_dims, axis=0).astype(np.float32)

    def to_batch(self, data):
        #  import ipdb
        #  ipdb.set_trace()
        for key in data:
            data[key] = data[key][None, ...]
        return data

    def inference(self, im, p2):
        """
        Args:
            im: shape(N, 3, H, W)

        Returns:
            dets: shape(N, M, 8)
        """
        config = self.config
        args = self.args
        eval_config = config['eval_config']
        model_config = config['model_config']
        data_config = config['eval_data_config']

        np.random.seed(eval_config['rng_seed'])

        self.logger.info('Using config:')
        pprint.pprint({
            'model_config': model_config,
            'data_config': data_config,
            'eval_config': eval_config
        })

        eval_out = eval_config['eval_out']
        if not os.path.exists(eval_out):
            self.logger.info('creat eval out directory {}'.format(eval_out))
            os.makedirs(eval_out)
        else:
            self.logger.warning('dir {} exist already!'.format(eval_out))

        # restore from random or checkpoint
        restore = True
        # two methods to load model
        # 1. load from any other dirs,it just needs config and model path
        # 2. load from training dir
        if args.model is not None:
            # assert args.model is not None, 'please determine model or checkpoint'
            # it should be a path to model
            checkpoint_name = os.path.basename(args.model)
            input_dir = os.path.dirname(args.model)
        elif args.checkpoint is not None:
            checkpoint_name = 'detector_{}.pth'.format(args.checkpoint)
            assert args.load_dir is not None, 'please choose a directory to load checkpoint'
            eval_config['load_dir'] = args.load_dir
            input_dir = os.path.join(eval_config['load_dir'],
                                     model_config['type'], data_config['name'])
            if not os.path.exists(input_dir):
                raise Exception(
                    'There is no input directory for loading network from {}'.
                    format(input_dir))
        else:
            restore = False

        # log for restore
        if restore:
            self.logger.info("restore from checkpoint")
        else:
            self.logger.info("use pytorch default initialization")

        # model
        model = detectors.build(model_config)
        model.eval()

        if restore:
            # saver
            saver = Saver(input_dir)
            saver.load({'model': model}, checkpoint_name)

        model = model.cuda()

        #  dataloader = dataloaders.make_data_loader(data_config, training=False)

        self.logger.info('Start testing')
        #  num_samples = len(dataloader)

        #  for step, data in enumerate(dataloader):
        data = self.preprocess(im, p2)
        data = self.to_batch(data)
        data = common.to_cuda(data)
        #  image_path = data[constants.KEY_IMAGE_PATH]

        with torch.no_grad():
            prediction = model(data)

        # initialize dets for each classes
        dets = [[]]

        scores = prediction[constants.KEY_CLASSES]
        boxes_2d = prediction[constants.KEY_BOXES_2D]
        dims = prediction[constants.KEY_DIMS]
        orients = prediction[constants.KEY_ORIENTS_V2]
        p2 = data[constants.KEY_STEREO_CALIB_P2_ORIG]

        # rcnn_3d = prediction['rcnn_3d']
        batch_size = scores.shape[0]
        scores = scores.view(-1, self.n_classes)
        new_scores = torch.zeros_like(scores)
        _, scores_argmax = scores.max(dim=-1)
        row = torch.arange(0, scores_argmax.numel()).type_as(scores_argmax)
        new_scores[row, scores_argmax] = scores[row, scores_argmax]
        scores = new_scores.view(batch_size, -1, self.n_classes)

        boxes_2d_per_img = boxes_2d[0]
        scores_per_img = scores[0]
        dims_per_img = dims[0]
        orients_per_img = orients[0]
        p2_per_img = p2[0]
        # rcnn_3d_per_img = rcnn_3d[batch_ind]
        # import ipdb
        # ipdb.set_trace()
        for class_ind in range(1, self.n_classes):
            # cls thresh
            inds = torch.nonzero(
                scores_per_img[:, class_ind] > self.thresh).view(-1)
            threshed_scores_per_img = scores_per_img[inds, class_ind]
            if inds.numel() > 0:
                threshed_boxes_2d_per_img = boxes_2d_per_img[inds]
                threshed_dims_per_img = dims_per_img[inds]
                threshed_orients_per_img = orients_per_img[inds]
                threshed_dets_per_img = torch.cat([
                    threshed_boxes_2d_per_img,
                    threshed_scores_per_img.unsqueeze(-1),
                    threshed_dims_per_img,
                    threshed_orients_per_img.unsqueeze(-1)
                ],
                                                  dim=-1)

                # sort by scores
                _, order = torch.sort(threshed_scores_per_img, 0, True)
                threshed_dets_per_img = threshed_dets_per_img[order]

                # nms
                keep = nms(threshed_dets_per_img[:, :4],
                           threshed_dets_per_img[:, 4],
                           self.nms).view(-1).long()
                nms_dets_per_img = threshed_dets_per_img[keep].detach().cpu(
                ).numpy()

                # calculate location
                location = geometry_utils.calc_location(
                    nms_dets_per_img[:, 5:8], nms_dets_per_img[:, :5],
                    nms_dets_per_img[:, 8], p2_per_img.cpu().numpy())

                nms_dets_per_img = np.concatenate(
                    [
                        nms_dets_per_img[:, :5], nms_dets_per_img[:, 5:8],
                        location, nms_dets_per_img[:, -1:]
                    ],
                    axis=-1)

                dets.append(nms_dets_per_img)
            else:
                dets.append([])

            #  duration_time = time.time() - end_time
            #  label_path = self._generate_label_path(image_path[batch_ind])
            #  self.save_mono_3d_dets(dets, label_path)
            #  sys.stdout.write('\r{}/{},duration: {}'.format(
            #  step + 1, num_samples, duration_time))
            #  sys.stdout.flush()

            #  end_time = time.time()

            #  xmin, ymin, xmax, ymax, cf, h, w, l, x, y, z, ry
        return dets

    def parse_kitti_format(self, dets, p2):
        """
        Args:
            dets: (N, 12)
        Returns:
            results: (boxes_3d, boxes_2d, label_classes, p2)
        """
        label_classes = []
        boxes_2d = []
        boxes_3d = []
        for cls_ind, det_per_cls in enumerate(dets):
            if len(det_per_cls) == 0:
                continue
            boxes_2d.append(det_per_cls[:, :5])
            boxes_3d.append(det_per_cls[:, [8, 9, 10, 5, 6, 7, 11, 4]])
            label_classes.extend([cls_ind] * det_per_cls.shape[0])

        p2 = p2
        boxes_2d = np.concatenate(boxes_2d, axis=0)
        boxes_3d = np.concatenate(boxes_3d, axis=0)
        label_classes = np.asarray(label_classes)

        return boxes_3d, boxes_2d, label_classes, p2

    def vis_result(self, im_to_show, dets, p2):
        """
        Args:
            im_to_show: shape(H, W, 3)
        """

        results = self.parse_kitti_format(dets, p2)
        image = self.visualizer.render_image(im_to_show, results)
        # self.visualizer.render_image_3d(im_to_show, dets, self.label_classes,
        # p2)
        # if self.online:
        # image postprocess
        cv2.imshow("test", image)
        cv2.waitKey(0)
        # else:
        # sample_name = self.get_sample_name_from_path(image_path)
        # saved_path = self.get_saved_path(sample_name)
        # cv2.imwrite(saved_path, image)

    def generate_config(self, args, logger):

        # read config from file
        if args.config is None:
            output_dir = os.path.join(args.load_dir, args.net, args.dataset)
            config_path = Config.infer_fromdir(output_dir)
        else:
            config_path = args.config
        config = Config.fromjson(config_path)

        eval_config = config['eval_config']
        model_config = config['model_config']
        data_config = config['eval_data_config']

        np.random.seed(eval_config['rng_seed'])

        torch.backends.cudnn.benchmark = True

        model_config['pretrained'] = False
        eval_config['feat_vis'] = args.feat_vis

        assert args.net is not None, 'please select a base model'
        model_config['type'] = args.net

        # use multi gpus to parallel
        eval_config['mGPUs'] = args.mGPUs
        eval_config['cuda'] = args.cuda

        # use pretrained model to initialize
        eval_config['model'] = args.model

        eval_config['checkpoint'] = args.checkpoint

        if args.nms is not None:
            eval_config['nms'] = args.nms

        if args.thresh is not None:
            eval_config['thresh'] = args.thresh
            model_config['score_thresh'] = args.thresh

        if args.img_path:
            dataset_config = data_config['dataset_config']
            # disable dataset file,just use image directly
            dataset_config['dataset_file'] = None
            dataset_config['demo_file'] = args.img_path
            dataset_config['calib_file'] = args.calib_file

        if args.img_dir:
            dataset_config = data_config['dataset_config']
            # disable dataset file,just use image directly
            dataset_config['dataset_file'] = None
            dataset_config['img_dir'] = args.img_dir

        if args.calib_file:
            dataset_config = data_config['dataset_config']
            dataset_config['calib_file'] = args.calib_file

        if args.calib_dir:
            dataset_config = data_config['dataset_config']
            dataset_config['calib_dir'] = args.calib_dir

        return config
Esempio n. 12
0
        image = np.asarray(image)
        visualize_bbox(image, label_boxes_2d[:num_instances], save=True)


if __name__ == '__main__':
    from utils.drawer import ImageVisualizer
    image_dir = '/data/object/training/image_2'
    result_dir = './results/data'
    save_dir = 'results/images'
    calib_dir = '/data/object/training/calib'
    label_dir = None
    calib_file = None
    visualizer = ImageVisualizer(
        image_dir,
        result_dir,
        label_dir=label_dir,
        calib_dir=calib_dir,
        calib_file=calib_file,
        online=False,
        save_dir=save_dir)
    dataset_config = {
        "classes": ["car"],
        "data_path": "leftImg8bit_trainvaltest/leftImg8bit",
        "dataset_file": "data/demo.txt",
        "label_path": "./gtFine",
        "root_path": "/data/Cityscape",
        "type": "cityscape"
    }
    # import ipdb
    # ipdb.set_trace()
    transform = None
    dataset = CityScapeDataset(dataset_config, transform, training=True)