Esempio n. 1
0
def evaluate_Blender():
    ds = load_model_ds('BlenderFiles/model_frames')
    cfg = yaml.load(open('configs/mb1_120x120.yml'), Loader=yaml.SafeLoader)
    os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
    os.environ['OMP_NUM_THREADS'] = '4'
    tddfa = TDDFA_ONNX(**cfg)
    face_boxes = FaceBoxes_ONNX()
    for artifact_id in ds:
        for img, id in zip(ds[artifact_id]['img'], ds[artifact_id]['ids']):
            wfp = f'examples/results/' + artifact_id + '_' + str(
                id) + '_2d_sparse.jpg'

            boxes = face_boxes(img)
            print(boxes)
            n = len(boxes)
            if n == 0:
                print(f'No face detected, exit')
                sys.exit(-1)
            print(f'Detect {n} faces')

            param_lst, roi_box_lst = tddfa(img, boxes)
            ver_lst = tddfa.recon_vers(param_lst,
                                       roi_box_lst,
                                       dense_flag=False)
            draw_landmarks(img, ver_lst, dense_flag=False, wfp=wfp)
Esempio n. 2
0
def main(args):
    cfg = yaml.load(open(args.config), Loader=yaml.FullLoader)
    gpu_mode = args.mode == 'gpu'
    tddfa = TDDFA(gpu_mode=gpu_mode, **cfg)

    # Initialize FaceBoxes
    face_boxes = FaceBoxes()

    # Given a still image path and load to BGR channel
    img = cv2.imread(args.img_fp)

    # Detect faces, get 3DMM params and roi boxes
    boxes = face_boxes(img)
    print(f'Detect {len(boxes)} faces')
    param_lst, roi_box_lst = tddfa(img, boxes)

    # Visualization
    ver_lst = tddfa.recon_vers(param_lst,
                               roi_box_lst,
                               dense_flag=args.dense_flag)
    wfp = f'examples/results/{args.img_fp.split("/")[-1].replace(get_suffix(args.img_fp), "")}_dense{args.dense_flag}.jpg'

    draw_landmarks(img,
                   ver_lst,
                   show_flg=args.show_flg,
                   dense_flg=args.dense_flag,
                   wfp=wfp)
Esempio n. 3
0
def main(args):
    # Init TDDFA
    cfg = yaml.load(open(args.config), Loader=yaml.SafeLoader)
    gpu_mode = args.mode == 'gpu'
    tddfa = TDDFA(gpu_mode=gpu_mode, **cfg)

    # Init FaceBoxes
    face_boxes = FaceBoxes()

    # Given a still image path and load to BGR channel
    img = cv2.imread(args.img_fp)

    # Detect faces, get 3DMM params and roi boxes
    boxes = face_boxes(img)
    n = len(boxes)
    print(f'Detect {n} faces')
    if n == 0:
        print(f'No face detected, exit')
        sys.exit(-1)

    param_lst, roi_box_lst = tddfa(img, boxes)

    # Visualization and serialization
    dense_flag = args.opt in ('2d_dense', '3d', 'depth', 'pncc', 'uv_tex', 'ply', 'obj')
    old_suffix = get_suffix(args.img_fp)
    new_suffix = f'.{args.opt}' if args.opt in ('ply', 'obj') else '.jpg'

    wfp = f'examples/results/{args.img_fp.split("/")[-1].replace(old_suffix, "")}_{args.opt}' + new_suffix

    ver_lst = tddfa.recon_vers(param_lst, roi_box_lst, dense_flag=dense_flag)

    if args.opt == '2d_sparse':
        draw_landmarks(img, ver_lst, show_flag=args.show_flag, dense_flag=dense_flag, wfp=wfp)
    elif args.opt == '2d_dense':
        draw_landmarks(img, ver_lst, show_flag=args.show_flag, dense_flag=dense_flag, wfp=wfp)
    elif args.opt == '3d':
        render(img, ver_lst, alpha=0.6, show_flag=args.show_flag, wfp=wfp)
    elif args.opt == 'depth':
        # if `with_bf_flag` is False, the background is black
        depth(img, ver_lst, show_flag=args.show_flag, wfp=wfp, with_bg_flag=True)
    elif args.opt == 'pncc':
        pncc(img, ver_lst, show_flag=args.show_flag, wfp=wfp, with_bg_flag=True)
    elif args.opt == 'uv_tex':
        uv_tex(img, ver_lst, show_flag=args.show_flag, wfp=wfp)
    elif args.opt == 'pose':
        viz_pose(img, param_lst, ver_lst, show_flag=args.show_flag, wfp=wfp)
    elif args.opt == 'ply':
        ser_to_ply(ver_lst, height=img.shape[0], wfp=wfp)
    elif args.opt == 'obj':
        ser_to_obj(img, ver_lst, height=img.shape[0], wfp=wfp)
    else:
        raise ValueError(f'Unknown opt {args.opt}')
Esempio n. 4
0
def main(args):
    # Init TDDFA
    cfg = yaml.load(open(args.config), Loader=yaml.SafeLoader)
    gpu_mode = args.mode == 'gpu'
    tddfa = TDDFA(gpu_mode=gpu_mode, **cfg)

    # Init FaceBoxes
    face_boxes = FaceBoxes()

    # Given a still image path and load to BGR channel
    img = cv2.imread(args.img_fp)

    # Detect faces, get 3DMM params and roi boxes
    boxes = face_boxes(img)
    n = len(boxes)
    print(f'Detect {n} faces')
    if n == 0:
        print(f'No face detected, exit')
        sys.exit(-1)

    param_lst, roi_box_lst = tddfa(img, boxes)

    # Visualization and serialization
    dense_flag = args.opt in (
        '2d_dense', '3d', 'depth'
    )  # if opt is 2d_dense or 3d, reconstruct dense vertices
    ver_lst = tddfa.recon_vers(param_lst, roi_box_lst, dense_flag=dense_flag)

    suffix = get_suffix(args.img_fp)
    wfp = f'examples/results/{args.img_fp.split("/")[-1].replace(suffix, "")}_{args.opt}.jpg'

    if args.opt == '2d_sparse':
        draw_landmarks(img,
                       ver_lst,
                       show_flag=args.show_flag,
                       dense_flag=dense_flag,
                       wfp=wfp)
    elif args.opt == '2d_dense':
        draw_landmarks(img,
                       ver_lst,
                       show_flag=args.show_flag,
                       dense_flag=dense_flag,
                       wfp=wfp)
    elif args.opt == '3d':
        render(img, ver_lst, alpha=0.6, show_flag=args.show_flag, wfp=wfp)
    elif args.opt == 'depth':
        depth(img, ver_lst, show_flag=args.show_flag, wfp=wfp)
    else:
        raise Exception(f'Unknown opt {args.opt}')
Esempio n. 5
0
def main(args):
    cfg = yaml.load(open(args.config), Loader=yaml.SafeLoader)

    # Init FaceBoxes and TDDFA, recommend using onnx flag
    if args.onnx:
        import os
        os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
        os.environ['OMP_NUM_THREADS'] = '4'

        from FaceBoxes.FaceBoxes_ONNX import FaceBoxes_ONNX
        from TDDFA_ONNX import TDDFA_ONNX

        face_boxes = FaceBoxes_ONNX()
        tddfa = TDDFA_ONNX(**cfg)
    else:
        gpu_mode = args.mode == 'gpu'
        tddfa = TDDFA(gpu_mode=gpu_mode, **cfg)
        face_boxes = FaceBoxes()

    # Given a still image path and load to BGR channel
    img = cv2.imread(args.img_fp)

    # Detect faces, get 3DMM params and roi boxes
    boxes = face_boxes(img)
    n = len(boxes)
    if n == 0:
        print('No face detected, exit')
        sys.exit(-1)
    print(f'Detect {n} faces')

    param_lst, roi_box_lst = tddfa(img, boxes)

    # Visualization and serialization
    dense_flag = args.opt in ('2d_dense', '3d', 'depth', 'pncc', 'uv_tex',
                              'ply', 'obj')
    old_suffix = get_suffix(args.img_fp)
    new_suffix = f'.{args.opt}' if args.opt in ('ply', 'obj') else '.jpg'

    wfp = f'{args.img_fp.split("/")[-1].replace(old_suffix, "")}_{args.opt}' +\
        new_suffix
    wfp = base_path / 'examples' / 'results' / wfp

    ver_lst = tddfa.recon_vers(param_lst, roi_box_lst, dense_flag=dense_flag)

    if args.opt == '2d_sparse':
        draw_landmarks(img,
                       ver_lst,
                       show_flag=args.show_flag,
                       dense_flag=dense_flag,
                       wfp=wfp)
    elif args.opt == '2d_dense':
        draw_landmarks(img,
                       ver_lst,
                       show_flag=args.show_flag,
                       dense_flag=dense_flag,
                       wfp=wfp)
    elif args.opt == '3d':
        render(img,
               ver_lst,
               tddfa.tri,
               alpha=0.6,
               show_flag=args.show_flag,
               wfp=wfp)
    elif args.opt == 'depth':
        # if `with_bf_flag` is False, the background is black
        depth(img,
              ver_lst,
              tddfa.tri,
              show_flag=args.show_flag,
              wfp=wfp,
              with_bg_flag=True)
    elif args.opt == 'pncc':
        pncc(img,
             ver_lst,
             tddfa.tri,
             show_flag=args.show_flag,
             wfp=wfp,
             with_bg_flag=True)
    elif args.opt == 'uv_tex':
        uv_tex(img, ver_lst, tddfa.tri, show_flag=args.show_flag, wfp=wfp)
    elif args.opt == 'pose':
        viz_pose(img, param_lst, ver_lst, show_flag=args.show_flag, wfp=wfp)
    elif args.opt == 'ply':
        ser_to_ply(ver_lst, tddfa.tri, height=img.shape[0], wfp=wfp)
    elif args.opt == 'obj':
        ser_to_obj(img, ver_lst, tddfa.tri, height=img.shape[0], wfp=wfp)
    else:
        raise ValueError(f'Unknown opt {args.opt}')
Esempio n. 6
0
def main(args):
    cfg = yaml.load(open(args.config), Loader=yaml.SafeLoader)

    # Init FaceBoxes and TDDFA, recommend using onnx flag
    if args.onnx:
        import os
        os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
        os.environ['OMP_NUM_THREADS'] = '4'

        from FaceBoxes.FaceBoxes_ONNX import FaceBoxes_ONNX
        from TDDFA_ONNX import TDDFA_ONNX

        face_boxes = FaceBoxes_ONNX()
        tddfa = TDDFA_ONNX(**cfg)
    else:
        gpu_mode = args.mode == 'gpu'
        tddfa = TDDFA(gpu_mode=gpu_mode, **cfg)
        face_boxes = FaceBoxes()

    # Given a still image path and load to BGR channel
    img = cv2.imread(args.img_fp)

    # Detect faces, get 3DMM params and roi boxes
    boxes = face_boxes(img)
    n = len(boxes)
    if n == 0:
        print(f'No face detected, exit')
        sys.exit(-1)
    print(f'Detect {n} faces')

    param_lst, roi_box_lst = tddfa(img, boxes)

    # Visualization and serialization
    dense_flag = args.opt in ('2d_dense', '3d', 'depth', 'pncc', 'uv_tex',
                              'ply', 'obj')
    old_suffix = get_suffix(args.img_fp)
    new_suffix = f'.{args.opt}' if args.opt in ('ply', 'obj') else '.jpg'

    wfp = f'examples/results/{args.img_fp.split("/")[-1].replace(old_suffix, "")}_{args.opt}' + new_suffix

    ver_lst = tddfa.recon_vers(param_lst, roi_box_lst, dense_flag=dense_flag)

    print(ver_lst[0].shape)

    print(tddfa.bfm.u.shape)

    lm68 = np.reshape(
        np.reshape(ver_lst[0].T, (-1, 1))[tddfa.bfm.keypoints], (-1, 3))
    print(lm68.shape)

    for i in range(lm68.shape[0]):
        lm68[i, 1] = img.shape[0] - lm68[i, 1]

    for i in range(ver_lst[0].shape[1]):
        ver_lst[0][1, i] = img.shape[0] - ver_lst[0][1, i]

    useful_tri = np.copy(tddfa.tri)

    for i in range(useful_tri.shape[0]):
        tmp = useful_tri[i, 2]
        useful_tri[i, 2] = useful_tri[i, 0]
        useful_tri[i, 0] = tmp

    useful_tri = useful_tri + 1

    np.save("asd_lm.npy", lm68)
    np.save("asd_v.npy", ver_lst[0].T)
    np.save("asd_f.npy", useful_tri)

    if args.opt == '2d_sparse':
        draw_landmarks(img,
                       ver_lst,
                       show_flag=args.show_flag,
                       dense_flag=dense_flag,
                       wfp=wfp)
    elif args.opt == '2d_dense':
        draw_landmarks(img,
                       ver_lst,
                       show_flag=args.show_flag,
                       dense_flag=dense_flag,
                       wfp=wfp)
    elif args.opt == '3d':
        render(img,
               ver_lst,
               tddfa.tri,
               alpha=0.6,
               show_flag=args.show_flag,
               wfp=wfp)
    elif args.opt == 'depth':
        # if `with_bf_flag` is False, the background is black
        depth(img,
              ver_lst,
              tddfa.tri,
              show_flag=args.show_flag,
              wfp=wfp,
              with_bg_flag=True)
    elif args.opt == 'pncc':
        pncc(img,
             ver_lst,
             tddfa.tri,
             show_flag=args.show_flag,
             wfp=wfp,
             with_bg_flag=True)
    elif args.opt == 'uv_tex':
        uv_tex(img, ver_lst, tddfa.tri, show_flag=args.show_flag, wfp=wfp)
    elif args.opt == 'pose':
        viz_pose(img, param_lst, ver_lst, show_flag=args.show_flag, wfp=wfp)
    elif args.opt == 'ply':
        ser_to_ply(ver_lst, tddfa.tri, height=img.shape[0], wfp=wfp)
    elif args.opt == 'obj':
        ser_to_obj(img, ver_lst, tddfa.tri, height=img.shape[0], wfp=wfp)
    else:
        raise ValueError(f'Unknown opt {args.opt}')