Esempio n. 1
0
def TuiGAN_transfer(Gs,
                    Zs,
                    reals,
                    NoiseAmp,
                    Gs2,
                    opt,
                    in_s=None,
                    gen_start_scale=0):
    if in_s is None:
        in_s = torch.full(reals[0].shape, 0, device=opt.device)
    x_ab = in_s
    x_aba = in_s
    count = 0

    dir2save = functions.generate_dir2save(opt)
    try:
        os.makedirs(dir2save)
    except OSError:
        pass
    for G, G2, Z_opt, real_curr, real_next, noise_amp in zip(
            Gs, Gs2, Zs, reals, reals[1:], NoiseAmp):
        z = functions.generate_noise([3, Z_opt.shape[2], Z_opt.shape[3]],
                                     device=opt.device)
        z = z.expand(real_curr.shape[0], 3, z.shape[2], z.shape[3])
        x_ab = x_ab[:, :, 0:real_curr.shape[2], 0:real_curr.shape[3]]
        z_in = noise_amp * z + real_curr
        x_ab = G(z_in.detach(), x_ab)

        x_aba = G2(x_ab, x_aba)
        x_ab = imresize(x_ab.detach(), 1 / opt.scale_factor, opt)
        x_ab = x_ab[:, :, 0:real_next.shape[2], 0:real_next.shape[3]]
        x_aba = imresize(x_aba.detach(), 1 / opt.scale_factor, opt)
        x_aba = x_aba[:, :, 0:real_next.shape[2], 0:real_next.shape[3]]
        count += 1
        plt.imsave('%s/x_ab_%d.png' % (dir2save, count),
                   functions.convert_image_np(x_ab.detach()),
                   vmin=0,
                   vmax=1)
        plt.imsave('%s.png' % (dir2save),
                   functions.convert_image_np(x_ab.detach()),
                   vmin=0,
                   vmax=1)
        # plt.imsave('%s.jpg' % (dir2save), functions.convert_image_np(x_ab.detach()), vmin=0,vmax=1)

    return x_ab.detach()
Esempio n. 2
0
def train(opt,Gs,Zs,reals,NoiseAmp, Gs2,Zs2,reals2,NoiseAmp2):
    real_, real_2 = functions.read_two_domains(opt)
    in_s = 0
    in_s2 = 0
    scale_num = 0
    real = imresize(real_,opt.scale1,opt)
    real2 = imresize(real_2,opt.scale1,opt)
    reals = functions.creat_reals_pyramid(real,reals,opt)
    reals2 = functions.creat_reals_pyramid(real2,reals2,opt)
    nfc_prev = 0

    errD_plot = []
    errD2_plot = []
    errG_plot = []
    errG2_plot = []
    rec_loss_plot = []
    rec_loss2_plot = []
    cyc_loss_plot = []
    cyc_loss2_plot = []
    
    
    while scale_num<opt.stop_scale+1:
        opt.nfc = min(opt.nfc_init * pow(2, math.floor(scale_num / 4)), 128)
        opt.min_nfc = min(opt.min_nfc_init * pow(2, math.floor(scale_num / 4)), 128)

        opt.out_ = functions.generate_dir2save(opt)
        opt.outf = '%s/%d' % (opt.out_,scale_num)
        try:
            os.makedirs(opt.outf)
        except OSError:
                pass

        D_curr,G_curr, D_curr2,G_curr2 = init_models(opt)
        
        if (nfc_prev==opt.nfc):
            G_curr.load_state_dict(torch.load('%s/%d/netG.pth' % (opt.out_,scale_num-1)))
            D_curr.load_state_dict(torch.load('%s/%d/netD.pth' % (opt.out_,scale_num-1)))
            G_curr2.load_state_dict(torch.load('%s/%d/netG2.pth' % (opt.out_,scale_num-1)))
            D_curr2.load_state_dict(torch.load('%s/%d/netD2.pth' % (opt.out_,scale_num-1)))
        
        z_curr,in_s,G_curr, z_curr2,in_s2,G_curr2 = train_single_scale(D_curr,G_curr, reals,Gs,Zs,in_s,NoiseAmp, errD_plot,errG_plot,rec_loss_plot,cyc_loss_plot, D_curr2,G_curr2, reals2,Gs2,Zs2,in_s2,NoiseAmp2, errD2_plot,errG2_plot,rec_loss2_plot,cyc_loss2_plot, opt,scale_num)
        
        G_curr = functions.reset_grads(G_curr,False)
        G_curr.eval()
        D_curr = functions.reset_grads(D_curr,False)
        D_curr.eval()
        
        G_curr2 = functions.reset_grads(G_curr2,False)
        G_curr2.eval()
        D_curr2 = functions.reset_grads(D_curr2,False)
        D_curr2.eval()
        
        Gs.append(G_curr)
        Zs.append(z_curr)
        NoiseAmp.append(opt.noise_amp)
        
        Gs2.append(G_curr2)
        Zs2.append(z_curr2)
        NoiseAmp2.append(opt.noise_amp2)

        torch.save(Zs, '%s/Zs.pth' % (opt.out_))
        torch.save(Gs, '%s/Gs.pth' % (opt.out_))
        torch.save(reals, '%s/reals.pth' % (opt.out_))
        torch.save(NoiseAmp, '%s/NoiseAmp.pth' % (opt.out_))
        
        torch.save(Zs2, '%s/Zs2.pth' % (opt.out_))
        torch.save(Gs2, '%s/Gs2.pth' % (opt.out_))
        torch.save(reals2, '%s/reals2.pth' % (opt.out_))
        torch.save(NoiseAmp2, '%s/NoiseAmp2.pth' % (opt.out_))

        scale_num+=1
        nfc_prev = opt.nfc
        del D_curr,G_curr, D_curr2,G_curr2

        functions.my_plot(errD_plot,errG_plot,rec_loss_plot,cyc_loss_plot,opt)
        functions.my_plot2(errD2_plot,errG2_plot,rec_loss2_plot,cyc_loss2_plot,opt)
    return
Esempio n. 3
0
    )
    parser.add_argument('--input_dir', help='input image dir', required=True)
    parser.add_argument('--input_name', help='input image name', required=True)
    parser.add_argument('--mode', help='task to be done', default='transfer')
    parser.add_argument('--start_scale',
                        help='injection scale',
                        type=int,
                        default='0')
    opt = parser.parse_args()
    opt = functions.post_config(opt)
    Gs = []
    Zs = []
    reals = []
    NoiseAmp = []
    Gs2 = []
    dir2save = functions.generate_dir2save(opt)

    if dir2save is None:
        print('task does not exist')
    else:
        try:
            os.makedirs(dir2save)
        except OSError:
            pass
        real_in = functions.read_image(opt)
        functions.adjust_scales2image(real_in, opt)

        real_ = functions.read_image(opt)
        real = imresize(real_, opt.scale1, opt)
        reals = functions.creat_reals_pyramid(real, reals, opt)
        Gs, Zs, NoiseAmp, Gs2 = functions.load_model(opt)
Esempio n. 4
0
def train(opt):
    print("Training model with the following parameters:")
    print("\t number of stages: {}".format(opt.train_stages))
    print("\t number of concurrently trained stages: {}".format(
        opt.train_depth))
    print("\t learning rate scaling: {}".format(opt.lr_scale))
    print("\t non-linearity: {}".format(opt.activation))

    # 加载数据集
    train_loader = DataLoader(datasets.NWPU(opt.train_images, opt),
                              batch_size=opt.batch_size,
                              shuffle=True,
                              num_workers=2)
    val_loader = DataLoader(datasets.NWPU(opt.val_images, opt),
                            batch_size=1,
                            shuffle=True,
                            num_workers=2)
    test_loader = DataLoader(datasets.NWPU(opt.test_images, opt),
                             batch_size=opt.batch_size,
                             shuffle=False,
                             num_workers=2)

    temp, _ = next(iter(train_loader))
    shapes = [temp[i].shape for i in range(len(temp))]
    print("Training on image pyramid: {}".format(shapes))
    del temp

    generator = init_G(opt)
    noise_amp = []

    # for scale_num in range(opt.stop_scale + 1):
    for scale_num in range(opt.stop_scale):
        opt.out_ = functions.generate_dir2save(opt)
        opt.outf = '%s/%d' % (opt.out_, scale_num)
        opt.logs_out = opt.out_ + '/logs'
        try:
            os.makedirs(opt.outf)
            os.makedirs(opt.logs_out)
        except OSError:
            print(OSError)
            pass

        d_curr = init_D(opt)
        if scale_num > 0:
            d_curr.load_state_dict(
                torch.load('%s/%d/netD.pth' % (opt.out_, scale_num - 1)))
            # generator = generator.module
            generator.init_next_stage()

        writer = SummaryWriter(log_dir=opt.logs_out)
        noise_amp, generator, d_curr = train_single_scale(
            d_curr, generator, shapes, train_loader, val_loader, test_loader,
            noise_amp, opt, scale_num, writer)

        # torch.save(fixed_noise, '%s/fixed_noise.pth' % opt.out_)
        torch.save(generator, '%s/G.pth' % opt.out_)
        # torch.save(reals, '%s/reals.pth' % opt.out_)
        torch.save(noise_amp, '%s/noise_amp.pth' % opt.out_)
        del d_curr
    writer.close()
    return