def __init__(self): self.MAX_SENTENCE_LENGTH = 250 self.MAX_WORD_LENGTH = -1 self.number_normalized = True self.norm_word_emb = True self.norm_gaz_emb = False self.use_single = True self.word_alphabet = Alphabet('word') self.label_alphabet = Alphabet('label', True) self.gaz_lower = False self.gaz = Gazetteer(self.gaz_lower, self.use_single) self.gaz_alphabet = Alphabet('gaz') self.HP_fix_gaz_emb = False self.HP_use_gaz = True self.tagScheme = "NoSeg" self.char_features = "LSTM" self.train_texts = [] self.dev_texts = [] self.test_texts = [] self.raw_texts = [] self.train_Ids = [] self.dev_Ids = [] self.test_Ids = [] self.raw_Ids = [] self.train_golds = [] self.dev_golds = [] self.test_golds = [] self.raw_golds = [] self.word_emb_dim = 50 self.gaz_emb_dim = 100 self.gaz_dropout = 0.3 self.pretrain_word_embedding = None self.pretrain_gaz_embedding = None self.label_size = 0 self.word_alphabet_size = 0 self.label_alphabet_size = 0 ### hyperparameters self.HP_iteration = 100 self.HP_batch_size = 10 self.HP_hidden_dim = 100 self.HP_dropout = 0.3 self.HP_lstm_layer = 1 self.HP_bilstm = True self.HP_gpu = False self.HP_lr = 0.015 self.HP_lr_decay = 0.05 self.HP_clip = 5.0 self.HP_momentum = 0 self.gpu = False self.enty_dropout = 0.3 # self.cls_mode = 'sigmoid' # or softmax self.cls_mode = 'softmax'
def __init__(self): self.MAX_SENTENCE_LENGTH = 250 self.MAX_WORD_LENGTH = -1 self.number_normalized = True self.norm_word_emb = True self.norm_biword_emb = True self.norm_gaz_emb = False self.word_alphabet = Alphabet('word') self.biword_alphabet = Alphabet('biword') # self.char_alphabet = Alphabet('character') self.label_alphabet = Alphabet('label', True) self.gaz_lower = False self.gaz = Gazetteer(self.gaz_lower) self.gaz_alphabet = Alphabet('gaz') self.gaz_count = {} self.gaz_split = {} self.biword_count = {} self.HP_fix_gaz_emb = False self.HP_use_gaz = True self.HP_use_count = False self.tagScheme = "NoSeg" self.char_features = "LSTM" self.train_texts = [] self.dev_texts = [] self.test_texts = [] self.raw_texts = [] self.train_Ids = [] self.dev_Ids = [] self.test_Ids = [] self.raw_Ids = [] self.train_split_index = [] self.dev_split_index = [] self.use_bigram = True self.word_emb_dim = 50 self.biword_emb_dim = 50 # self.char_emb_dim = 30 self.gaz_emb_dim = 50 # self.gaz_dropout = 0.5 self.pretrain_word_embedding = None self.pretrain_biword_embedding = None self.pretrain_gaz_embedding = None self.label_size = 0 self.word_alphabet_size = 0 self.biword_alphabet_size = 0 # self.char_alphabet_size = 0 self.label_alphabet_size = 0
def __init__(self): self.MAX_SENTENCE_LENGTH = 250 self.MAX_WORD_LENGTH = -1 self.number_normalized = True self.norm_word_emb = True self.norm_biword_emb = True self.norm_gaz_emb = False self.word_alphabet = Alphabet('word') self.biword_alphabet = Alphabet('biword') self.char_alphabet = Alphabet('character') self.label_alphabet = Alphabet('label', True) #self.simi_alphabet = Alphabet('simi') #添加计算相似度词语的信息 self.gaz_lower = False self.gaz = Gazetteer(self.gaz_lower) self.gaz_alphabet = Alphabet('gaz') self.gaz_count = {} self.gaz_split = {} self.biword_count = {} self.HP_fix_gaz_emb = False self.HP_use_gaz = True self.HP_use_count = False self.tagScheme = "NoSeg" self.char_features = "LSTM" self.train_texts = [] self.dev_texts = [] self.test_texts = [] self.raw_texts = [] self.train_Ids = [] self.dev_Ids = [] self.test_Ids = [] self.raw_Ids = [] self.train_split_index = [] self.dev_split_index = [] self.use_bigram = True self.word_emb_dim = 200 self.biword_emb_dim = 200 self.char_emb_dim = 30 self.gaz_emb_dim = 200 self.gaz_dropout = 0.5 self.pretrain_word_embedding = None self.pretrain_biword_embedding = None self.pretrain_gaz_embedding = None self.label_size = 0 self.word_alphabet_size = 0 self.biword_alphabet_size = 0 self.char_alphabet_size = 0 self.label_alphabet_size = 0 #设置词典相似度相关的参数 self.simi_dic_emb = None #设置相似度的嵌入值 self.simi_dic_dim = 10 #设置相似度向量的纬度 self.use_dictionary = False # 设置当前是否使用词典 self.simi_list = [] #存储当前的每个字对应的相似度值 # self.use_gazcount = 'True' ### hyperparameters self.HP_iteration = 60 self.HP_batch_size = 10 self.HP_char_hidden_dim = 50 self.HP_hidden_dim = 128 self.HP_dropout = 0.5 self.HP_lstm_layer = 1 self.HP_bilstm = True self.HP_use_char = False self.HP_gpu = True self.HP_lr = 0.015 self.HP_lr_decay = 0.05 self.HP_clip = 5.0 self.HP_momentum = 0 self.HP_num_layer = 4
class Data: def __init__(self): self.MAX_SENTENCE_LENGTH = 250 self.MAX_WORD_LENGTH = -1 self.number_normalized = True self.norm_word_emb = True self.norm_biword_emb = True self.norm_gaz_emb = False self.word_alphabet = Alphabet('word') self.biword_alphabet = Alphabet('biword') self.char_alphabet = Alphabet('character') self.label_alphabet = Alphabet('label', True) #self.simi_alphabet = Alphabet('simi') #添加计算相似度词语的信息 self.gaz_lower = False self.gaz = Gazetteer(self.gaz_lower) self.gaz_alphabet = Alphabet('gaz') self.gaz_count = {} self.gaz_split = {} self.biword_count = {} self.HP_fix_gaz_emb = False self.HP_use_gaz = True self.HP_use_count = False self.tagScheme = "NoSeg" self.char_features = "LSTM" self.train_texts = [] self.dev_texts = [] self.test_texts = [] self.raw_texts = [] self.train_Ids = [] self.dev_Ids = [] self.test_Ids = [] self.raw_Ids = [] self.train_split_index = [] self.dev_split_index = [] self.use_bigram = True self.word_emb_dim = 200 self.biword_emb_dim = 200 self.char_emb_dim = 30 self.gaz_emb_dim = 200 self.gaz_dropout = 0.5 self.pretrain_word_embedding = None self.pretrain_biword_embedding = None self.pretrain_gaz_embedding = None self.label_size = 0 self.word_alphabet_size = 0 self.biword_alphabet_size = 0 self.char_alphabet_size = 0 self.label_alphabet_size = 0 #设置词典相似度相关的参数 self.simi_dic_emb = None #设置相似度的嵌入值 self.simi_dic_dim = 10 #设置相似度向量的纬度 self.use_dictionary = False # 设置当前是否使用词典 self.simi_list = [] #存储当前的每个字对应的相似度值 # self.use_gazcount = 'True' ### hyperparameters self.HP_iteration = 60 self.HP_batch_size = 10 self.HP_char_hidden_dim = 50 self.HP_hidden_dim = 128 self.HP_dropout = 0.5 self.HP_lstm_layer = 1 self.HP_bilstm = True self.HP_use_char = False self.HP_gpu = True self.HP_lr = 0.015 self.HP_lr_decay = 0.05 self.HP_clip = 5.0 self.HP_momentum = 0 self.HP_num_layer = 4 def show_data_summary(self): print("DATA SUMMARY START:") print(" Tag scheme: %s" % (self.tagScheme)) print(" MAX SENTENCE LENGTH: %s" % (self.MAX_SENTENCE_LENGTH)) print(" MAX WORD LENGTH: %s" % (self.MAX_WORD_LENGTH)) print(" Number normalized: %s" % (self.number_normalized)) print(" Use bigram: %s" % (self.use_bigram)) print(" Word alphabet size: %s" % (self.word_alphabet_size)) print(" Biword alphabet size: %s" % (self.biword_alphabet_size)) print(" Char alphabet size: %s" % (self.char_alphabet_size)) print(" Gaz alphabet size: %s" % (self.gaz_alphabet.size())) print(" Label alphabet size: %s" % (self.label_alphabet_size)) print(" Word embedding size: %s" % (self.word_emb_dim)) print(" Biword embedding size: %s" % (self.biword_emb_dim)) print(" Char embedding size: %s" % (self.char_emb_dim)) print(" Gaz embedding size: %s" % (self.gaz_emb_dim)) print(" Norm word emb: %s" % (self.norm_word_emb)) print(" Norm biword emb: %s" % (self.norm_biword_emb)) print(" Norm gaz emb: %s" % (self.norm_gaz_emb)) print(" Norm gaz dropout: %s" % (self.gaz_dropout)) print(" Train instance number: %s" % (len(self.train_texts))) print(" Dev instance number: %s" % (len(self.dev_texts))) print(" Test instance number: %s" % (len(self.test_texts))) print(" Raw instance number: %s" % (len(self.raw_texts))) print(" Hyperpara iteration: %s" % (self.HP_iteration)) print(" Hyperpara batch size: %s" % (self.HP_batch_size)) print(" Hyperpara lr: %s" % (self.HP_lr)) print(" Hyperpara lr_decay: %s" % (self.HP_lr_decay)) print(" Hyperpara HP_clip: %s" % (self.HP_clip)) print(" Hyperpara momentum: %s" % (self.HP_momentum)) print(" Hyperpara hidden_dim: %s" % (self.HP_hidden_dim)) print(" Hyperpara dropout: %s" % (self.HP_dropout)) print(" Hyperpara lstm_layer: %s" % (self.HP_lstm_layer)) print(" Hyperpara bilstm: %s" % (self.HP_bilstm)) print(" Hyperpara GPU: %s" % (self.HP_gpu)) print(" Hyperpara use_gaz: %s" % (self.HP_use_gaz)) print(" Hyperpara fix gaz emb: %s" % (self.HP_fix_gaz_emb)) print(" Hyperpara use_char: %s" % (self.HP_use_char)) if self.HP_use_char: print(" Char_features: %s" % (self.char_features)) print("DATA SUMMARY END.") sys.stdout.flush() def refresh_label_alphabet(self, input_file): old_size = self.label_alphabet_size self.label_alphabet.clear(True) in_lines = open(input_file, 'r', encoding="utf-8").readlines() for line in in_lines: if len(line) > 2: pairs = line.strip().split() label = pairs[-1] self.label_alphabet.add(label) self.label_alphabet_size = self.label_alphabet.size() startS = False startB = False for label, _ in self.label_alphabet.iteritems(): if "S-" in label.upper(): startS = True elif "B-" in label.upper(): startB = True if startB: if startS: self.tagScheme = "BMES" else: self.tagScheme = "BIO" self.fix_alphabet() print("Refresh label alphabet finished: old:%s -> new:%s" % (old_size, self.label_alphabet_size)) def build_alphabet(self, input_file): in_lines = open(input_file, 'r', encoding="utf-8").readlines() seqlen = 0 for idx in range(len(in_lines)): line = in_lines[idx] if len(line) > 2: pairs = line.strip().split() word = pairs[0] if self.number_normalized: word = normalize_word(word) label = pairs[-1] self.label_alphabet.add(label) self.word_alphabet.add(word) if idx < len(in_lines) - 1 and len(in_lines[idx + 1]) > 2: biword = word + in_lines[idx + 1].strip().split()[0] else: biword = word + NULLKEY self.biword_alphabet.add(biword) # biword_index = self.biword_alphabet.get_index(biword) self.biword_count[biword] = self.biword_count.get(biword, 0) + 1 for char in word: self.char_alphabet.add(char) #当前句子的长度 seqlen += 1 else: #出现空行则清零 seqlen = 0 #计算各个字表的长度 self.word_alphabet_size = self.word_alphabet.size() self.biword_alphabet_size = self.biword_alphabet.size() self.char_alphabet_size = self.char_alphabet.size() self.label_alphabet_size = self.label_alphabet.size() startS = False startB = False for label, _ in self.label_alphabet.iteritems(): if "S-" in label.upper(): startS = True elif "B-" in label.upper(): startB = True if startB: if startS: self.tagScheme = "BMES" else: self.tagScheme = "BIO" def build_gaz_file(self, gaz_file): ## build gaz file,initial read gaz embedding file if gaz_file: fins = open(gaz_file, 'r', encoding="utf-8").readlines() for fin in fins: fin = fin.strip().split()[0] if fin: self.gaz.insert(fin, "one_source") print("Load gaz file: ", gaz_file, " total size:", self.gaz.size()) else: print("Gaz file is None, load nothing") #def build_dict_alphabet( def build_gaz_alphabet(self, input_file, count=False): in_lines = open(input_file, 'r', encoding="utf-8").readlines() word_list = [] for line in in_lines: if len(line) > 3: word = line.split()[0] if self.number_normalized: word = normalize_word(word) word_list.append(word) else: #word_list为当前这个句子的所有字 w_length = len(word_list) entitys = [] #获取到了句子 for idx in range(w_length): matched_entity = self.gaz.enumerateMatchList( word_list[idx:]) entitys += matched_entity for entity in matched_entity: # print entity, self.gaz.searchId(entity),self.gaz.searchType(entity) self.gaz_alphabet.add(entity) index = self.gaz_alphabet.get_index(entity) self.gaz_count[index] = self.gaz_count.get( index, 0) ## initialize gaz count #0表示若无想要的关键词则返回0,没有index这一个键值 if count: entitys.sort(key=lambda x: -len(x)) while entitys: longest = entitys[0] longest_index = self.gaz_alphabet.get_index(longest) #最长词的index加1 self.gaz_count[longest_index] = self.gaz_count.get( longest_index, 0) + 1 #把一个词语覆盖的词全部删掉 gazlen = len(longest) for i in range(gazlen): for j in range(i + 1, gazlen + 1): covering_gaz = longest[i:j] if covering_gaz in entitys: entitys.remove(covering_gaz) # print('remove:',covering_gaz) word_list = [] print("gaz alphabet size:", self.gaz_alphabet.size()) def fix_alphabet(self): self.word_alphabet.close() self.biword_alphabet.close() self.char_alphabet.close() self.label_alphabet.close() self.gaz_alphabet.close() def build_word_pretrain_emb(self, emb_path): print("build word pretrain emb...") self.pretrain_word_embedding, self.word_emb_dim = build_pretrain_embedding( emb_path, self.word_alphabet, self.word_emb_dim, self.norm_word_emb) def build_biword_pretrain_emb(self, emb_path): print("build biword pretrain emb...") self.pretrain_biword_embedding, self.biword_emb_dim = build_pretrain_embedding( emb_path, self.biword_alphabet, self.biword_emb_dim, self.norm_biword_emb) def build_gaz_pretrain_emb(self, emb_path): print("build gaz pretrain emb...") self.pretrain_gaz_embedding, self.gaz_emb_dim = build_pretrain_embedding( emb_path, self.gaz_alphabet, self.gaz_emb_dim, self.norm_gaz_emb) def generate_instance_with_gaz(self, input_file, name): self.fix_alphabet() if name == "train": self.train_texts, self.train_Ids = read_instance_with_gaz( self.HP_num_layer, input_file, self.gaz, self.word_alphabet, self.biword_alphabet, self.biword_count, self.char_alphabet, self.gaz_alphabet, self.gaz_count, self.gaz_split, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) elif name == "dev": self.dev_texts, self.dev_Ids = read_instance_with_gaz( self.HP_num_layer, input_file, self.gaz, self.word_alphabet, self.biword_alphabet, self.biword_count, self.char_alphabet, self.gaz_alphabet, self.gaz_count, self.gaz_split, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) elif name == "test": self.test_texts, self.test_Ids = read_instance_with_gaz( self.HP_num_layer, input_file, self.gaz, self.word_alphabet, self.biword_alphabet, self.biword_count, self.char_alphabet, self.gaz_alphabet, self.gaz_count, self.gaz_split, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) elif name == "raw": self.raw_texts, self.raw_Ids = read_instance_with_gaz( self.HP_num_layer, input_file, self.gaz, self.word_alphabet, self.biword_alphabet, self.biword_count, self.char_alphabet, self.gaz_alphabet, self.gaz_count, self.gaz_split, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) else: print( "Error: you can only generate train/dev/test instance! Illegal input:%s" % (name)) def write_decoded_results(self, output_file, predict_results, name): fout = open(output_file, 'w') sent_num = len(predict_results) content_list = [] if name == 'raw': content_list = self.raw_texts elif name == 'test': content_list = self.test_texts elif name == 'dev': content_list = self.dev_texts elif name == 'train': content_list = self.train_texts else: print( "Error: illegal name during writing predict result, name should be within train/dev/test/raw !" ) assert (sent_num == len(content_list)) for idx in range(sent_num): sent_length = len(predict_results[idx]) for idy in range(sent_length): ## content_list[idx] is a list with [word, char, label] fout.write(content_list[idx][0][idy].encode('utf-8') + " " + predict_results[idx][idy] + '\n') fout.write('\n') fout.close() print("Predict %s result has been written into file. %s" % (name, output_file))
def __init__(self): self.MAX_SENTENCE_LENGTH = 250 self.MAX_WORD_LENGTH = -1 self.number_normalized = True self.norm_word_emb = True self.norm_biword_emb = True self.norm_gaz_emb = False self.word_alphabet = Alphabet('word') self.biword_alphabet = Alphabet('biword') self.char_alphabet = Alphabet('character') # self.word_alphabet.add(START) # self.word_alphabet.add(UNKNOWN) # self.char_alphabet.add(START) # self.char_alphabet.add(UNKNOWN) # self.char_alphabet.add(PADDING) self.label_alphabet = Alphabet('label', True) self.gaz_lower = False self.gaz = Gazetteer(self.gaz_lower) self.gaz_alphabet = Alphabet('gaz') self.HP_fix_gaz_emb = False self.HP_use_gaz = True self.tagScheme = "NoSeg" self.char_features = "LSTM" self.train_texts = [] self.dev_texts = [] self.test_texts = [] self.raw_texts = [] self.train_Ids = [] self.dev_Ids = [] self.test_Ids = [] self.raw_Ids = [] self.use_bigram = True self.word_emb_dim = 50 self.biword_emb_dim = 50 self.char_emb_dim = 30 self.gaz_emb_dim = 50 self.gaz_dropout = 0.5 self.pretrain_word_embedding = None self.pretrain_biword_embedding = None self.pretrain_gaz_embedding = None self.label_size = 0 self.word_alphabet_size = 0 self.biword_alphabet_size = 0 self.char_alphabet_size = 0 self.label_alphabet_size = 0 ### hyperparameters self.HP_iteration = 100 self.HP_batch_size = 10 self.HP_char_hidden_dim = 50 self.HP_hidden_dim = 200 self.HP_dropout = 0.5 self.HP_lstm_layer = 1 self.HP_bilstm = True self.HP_use_char = False self.HP_gpu = False self.HP_lr = 0.015 self.HP_lr_decay = 0.05 self.HP_clip = 5.0 self.HP_momentum = 0
class Data: def __init__(self): self.MAX_SENTENCE_LENGTH = 250 self.MAX_WORD_LENGTH = -1 self.number_normalized = True self.norm_word_emb = True self.norm_biword_emb = True self.norm_gaz_emb = False self.word_alphabet = Alphabet('word') self.biword_alphabet = Alphabet('biword') self.char_alphabet = Alphabet('character') # self.word_alphabet.add(START) # self.word_alphabet.add(UNKNOWN) # self.char_alphabet.add(START) # self.char_alphabet.add(UNKNOWN) # self.char_alphabet.add(PADDING) self.label_alphabet = Alphabet('label', True) self.gaz_lower = False self.gaz = Gazetteer(self.gaz_lower) self.gaz_alphabet = Alphabet('gaz') self.HP_fix_gaz_emb = False self.HP_use_gaz = True self.tagScheme = "NoSeg" self.char_features = "LSTM" self.train_texts = [] self.dev_texts = [] self.test_texts = [] self.raw_texts = [] self.train_Ids = [] self.dev_Ids = [] self.test_Ids = [] self.raw_Ids = [] self.use_bigram = True self.word_emb_dim = 50 self.biword_emb_dim = 50 self.char_emb_dim = 30 self.gaz_emb_dim = 50 self.gaz_dropout = 0.5 self.pretrain_word_embedding = None self.pretrain_biword_embedding = None self.pretrain_gaz_embedding = None self.label_size = 0 self.word_alphabet_size = 0 self.biword_alphabet_size = 0 self.char_alphabet_size = 0 self.label_alphabet_size = 0 ### hyperparameters self.HP_iteration = 100 self.HP_batch_size = 10 self.HP_char_hidden_dim = 50 self.HP_hidden_dim = 200 self.HP_dropout = 0.5 self.HP_lstm_layer = 1 self.HP_bilstm = True self.HP_use_char = False self.HP_gpu = False self.HP_lr = 0.015 self.HP_lr_decay = 0.05 self.HP_clip = 5.0 self.HP_momentum = 0 def show_data_summary(self): print("DATA SUMMARY START:") print(" Tag scheme: %s" % (self.tagScheme)) print(" MAX SENTENCE LENGTH: %s" % (self.MAX_SENTENCE_LENGTH)) print(" MAX WORD LENGTH: %s" % (self.MAX_WORD_LENGTH)) print(" Number normalized: %s" % (self.number_normalized)) print(" Use bigram: %s" % (self.use_bigram)) print(" Word alphabet size: %s" % (self.word_alphabet_size)) print(" Biword alphabet size: %s" % (self.biword_alphabet_size)) print(" Char alphabet size: %s" % (self.char_alphabet_size)) print(" Gaz alphabet size: %s" % (self.gaz_alphabet.size())) print(" Label alphabet size: %s" % (self.label_alphabet_size)) print(" Word embedding size: %s" % (self.word_emb_dim)) print(" Biword embedding size: %s" % (self.biword_emb_dim)) print(" Char embedding size: %s" % (self.char_emb_dim)) print(" Gaz embedding size: %s" % (self.gaz_emb_dim)) print(" Norm word emb: %s" % (self.norm_word_emb)) print(" Norm biword emb: %s" % (self.norm_biword_emb)) print(" Norm gaz emb: %s" % (self.norm_gaz_emb)) print(" Norm gaz dropout: %s" % (self.gaz_dropout)) print(" Train instance number: %s" % (len(self.train_texts))) print(" Dev instance number: %s" % (len(self.dev_texts))) print(" Test instance number: %s" % (len(self.test_texts))) print(" Raw instance number: %s" % (len(self.raw_texts))) print(" Hyperpara iteration: %s" % (self.HP_iteration)) print(" Hyperpara batch size: %s" % (self.HP_batch_size)) print(" Hyperpara lr: %s" % (self.HP_lr)) print(" Hyperpara lr_decay: %s" % (self.HP_lr_decay)) print(" Hyperpara HP_clip: %s" % (self.HP_clip)) print(" Hyperpara momentum: %s" % (self.HP_momentum)) print(" Hyperpara hidden_dim: %s" % (self.HP_hidden_dim)) print(" Hyperpara dropout: %s" % (self.HP_dropout)) print(" Hyperpara lstm_layer: %s" % (self.HP_lstm_layer)) print(" Hyperpara bilstm: %s" % (self.HP_bilstm)) print(" Hyperpara GPU: %s" % (self.HP_gpu)) print(" Hyperpara use_gaz: %s" % (self.HP_use_gaz)) print(" Hyperpara fix gaz emb: %s" % (self.HP_fix_gaz_emb)) print(" Hyperpara use_char: %s" % (self.HP_use_char)) if self.HP_use_char: print(" Char_features: %s" % (self.char_features)) print("DATA SUMMARY END.") sys.stdout.flush() def refresh_label_alphabet(self, input_file): old_size = self.label_alphabet_size self.label_alphabet.clear(True) in_lines = open(input_file, 'r', encoding='utf-8').readlines() for line in in_lines: if len(line) > 2: pairs = line.strip().split() label = pairs[-1] self.label_alphabet.add(label) self.label_alphabet_size = self.label_alphabet.size() startS = False startB = False for label, _ in self.label_alphabet.items(): if "S-" in label.upper(): startS = True elif "B-" in label.upper(): startB = True if startB: if startS: self.tagScheme = "BMES" else: self.tagScheme = "BIO" self.fix_alphabet() print("Refresh label alphabet finished: old:%s -> new:%s" % (old_size, self.label_alphabet_size)) def build_alphabet(self, input_file): in_lines = open(input_file, 'r', encoding='utf-8').readlines() for idx in range(len(in_lines)): line = in_lines[idx] if len(line) > 2: pairs = line.strip().split() word = pairs[0].encode('utf-8').decode('utf-8') if self.number_normalized: word = normalize_word(word) label = pairs[-1] self.label_alphabet.add(label) self.word_alphabet.add(word) if idx < len(in_lines) - 1 and len(in_lines[idx + 1]) > 2: biword = word + in_lines[idx + 1].strip().split( )[0].encode('utf-8').decode('utf-8') else: biword = word + NULLKEY self.biword_alphabet.add(biword) for char in word: self.char_alphabet.add(char) self.word_alphabet_size = self.word_alphabet.size() self.biword_alphabet_size = self.biword_alphabet.size() self.char_alphabet_size = self.char_alphabet.size() self.label_alphabet_size = self.label_alphabet.size() startS = False startB = False for label, _ in self.label_alphabet.items(): if "S-" in label.upper(): startS = True elif "B-" in label.upper(): startB = True if startB: if startS: self.tagScheme = "BMES" else: self.tagScheme = "BIO" def build_gaz_file(self, gaz_file): ## build gaz file,initial read gaz embedding file if gaz_file: fins = open(gaz_file, 'r', encoding='utf-8').readlines() for fin in fins: fin = fin.strip().split()[0].encode('utf-8').decode('utf-8') if fin: self.gaz.insert(fin, "one_source") print("Load gaz file: ", gaz_file, " total size:", self.gaz.size()) else: print("Gaz file is None, load nothing") def build_gaz_alphabet(self, input_file): in_lines = open(input_file, 'r', encoding='utf-8').readlines() word_list = [] for line in in_lines: if len(line) > 3: word = line.split()[0].encode('utf-8').decode('utf-8') if self.number_normalized: word = normalize_word(word) word_list.append(word) else: w_length = len(word_list) for idx in range(w_length): matched_entity = self.gaz.enumerateMatchList( word_list[idx:]) for entity in matched_entity: # print entity, self.gaz.searchId(entity),self.gaz.searchType(entity) self.gaz_alphabet.add(entity) word_list = [] print("gaz alphabet size:", self.gaz_alphabet.size()) def fix_alphabet(self): self.word_alphabet.close() self.biword_alphabet.close() self.char_alphabet.close() self.label_alphabet.close() self.gaz_alphabet.close() def build_word_pretrain_emb(self, emb_path): print("build word pretrain emb...") self.pretrain_word_embedding, self.word_emb_dim = build_pretrain_embedding( emb_path, self.word_alphabet, self.word_emb_dim, self.norm_word_emb) def build_biword_pretrain_emb(self, emb_path): print("build biword pretrain emb...") self.pretrain_biword_embedding, self.biword_emb_dim = build_pretrain_embedding( emb_path, self.biword_alphabet, self.biword_emb_dim, self.norm_biword_emb) def build_gaz_pretrain_emb(self, emb_path): print("build gaz pretrain emb...") self.pretrain_gaz_embedding, self.gaz_emb_dim = build_pretrain_embedding( emb_path, self.gaz_alphabet, self.gaz_emb_dim, self.norm_gaz_emb) def generate_instance(self, input_file, name): self.fix_alphabet() if name == "train": self.train_texts, self.train_Ids = read_seg_instance( input_file, self.word_alphabet, self.biword_alphabet, self.char_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) elif name == "dev": self.dev_texts, self.dev_Ids = read_seg_instance( input_file, self.word_alphabet, self.biword_alphabet, self.char_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) elif name == "test": self.test_texts, self.test_Ids = read_seg_instance( input_file, self.word_alphabet, self.biword_alphabet, self.char_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) elif name == "raw": self.raw_texts, self.raw_Ids = read_seg_instance( input_file, self.word_alphabet, self.biword_alphabet, self.char_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) else: print( "Error: you can only generate train/dev/test instance! Illegal input:%s" % (name)) def generate_instance_with_gaz(self, input_file, name): self.fix_alphabet() if name == "train": self.train_texts, self.train_Ids = read_instance_with_gaz( input_file, self.gaz, self.word_alphabet, self.biword_alphabet, self.char_alphabet, self.gaz_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) elif name == "dev": self.dev_texts, self.dev_Ids = read_instance_with_gaz( input_file, self.gaz, self.word_alphabet, self.biword_alphabet, self.char_alphabet, self.gaz_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) elif name == "test": self.test_texts, self.test_Ids = read_instance_with_gaz( input_file, self.gaz, self.word_alphabet, self.biword_alphabet, self.char_alphabet, self.gaz_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) elif name == "raw": self.raw_texts, self.raw_Ids = read_instance_with_gaz( input_file, self.gaz, self.word_alphabet, self.biword_alphabet, self.char_alphabet, self.gaz_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) else: print( "Error: you can only generate train/dev/test instance! Illegal input:%s" % (name)) def write_decoded_results(self, output_file, predict_results, name): fout = open(output_file, 'w') sent_num = len(predict_results) content_list = [] if name == 'raw': content_list = self.raw_texts elif name == 'test': content_list = self.test_texts elif name == 'dev': content_list = self.dev_texts elif name == 'train': content_list = self.train_texts else: print( "Error: illegal name during writing predict result, name should be within train/dev/test/raw !" ) assert (sent_num == len(content_list)) for idx in range(sent_num): sent_length = len(predict_results[idx]) for idy in range(sent_length): ## content_list[idx] is a list with [word, char, label] fout.write(content_list[idx][0][idy].encode('utf-8') + " " + predict_results[idx][idy] + '\n') fout.write('\n') fout.close() print("Predict %s result has been written into file. %s" % (name, output_file))
class Data: def __init__(self): self.MAX_SENTENCE_LENGTH = 250 self.MAX_WORD_LENGTH = -1 self.number_normalized = True self.norm_word_emb = True self.norm_biword_emb = True self.norm_gaz_emb = False self.word_alphabet = Alphabet('word') self.biword_alphabet = Alphabet('biword') self.char_alphabet = Alphabet('character') # self.word_alphabet.add(START) # self.word_alphabet.add(UNKNOWN) # self.char_alphabet.add(START) # self.char_alphabet.add(UNKNOWN) # self.char_alphabet.add(PADDING) self.label_alphabet = Alphabet('label', True) self.gaz_lower = False self.gaz = Gazetteer(self.gaz_lower) self.gaz_alphabet = Alphabet('gaz') self.HP_fix_gaz_emb = False self.HP_use_gaz = True self.tagScheme = "NoSeg" self.char_features = "LSTM" self.train_texts = [] self.dev_texts = [] self.test_texts = [] self.raw_texts = [] self.train_Ids = [] self.dev_Ids = [] self.test_Ids = [] self.raw_Ids = [] self.use_bigram = True self.word_emb_dim = 50 self.biword_emb_dim = 50 self.char_emb_dim = 30 self.gaz_emb_dim = 50 self.gaz_dropout = 0.5 self.pretrain_word_embedding = None self.pretrain_biword_embedding = None self.pretrain_gaz_embedding = None self.label_size = 0 self.word_alphabet_size = 0 self.biword_alphabet_size = 0 self.char_alphabet_size = 0 self.label_alphabet_size = 0 ### hyperparameters self.HP_iteration = 100 self.HP_batch_size = 10 self.HP_char_hidden_dim = 50 self.HP_hidden_dim = 200 self.HP_dropout = 0.5 self.HP_lstm_layer = 1 self.HP_bilstm = True self.HP_use_char = False self.HP_gpu = False self.HP_lr = 0.015 self.HP_lr_decay = 0.05 self.HP_clip = 5.0 self.HP_momentum = 0 def show_data_summary(self): print("DATA SUMMARY START:") print(" Tag scheme: %s"%(self.tagScheme)) print(" MAX SENTENCE LENGTH: %s"%(self.MAX_SENTENCE_LENGTH)) print(" MAX WORD LENGTH: %s"%(self.MAX_WORD_LENGTH)) print(" Number normalized: %s"%(self.number_normalized)) print(" Use bigram: %s"%(self.use_bigram)) print(" Word alphabet size: %s"%(self.word_alphabet_size)) print(" Biword alphabet size: %s"%(self.biword_alphabet_size)) print(" Char alphabet size: %s"%(self.char_alphabet_size)) print(" Gaz alphabet size: %s"%(self.gaz_alphabet.size())) print(" Label alphabet size: %s"%(self.label_alphabet_size)) print(" Word embedding size: %s"%(self.word_emb_dim)) print(" Biword embedding size: %s"%(self.biword_emb_dim)) print(" Char embedding size: %s"%(self.char_emb_dim)) print(" Gaz embedding size: %s"%(self.gaz_emb_dim)) print(" Norm word emb: %s"%(self.norm_word_emb)) print(" Norm biword emb: %s"%(self.norm_biword_emb)) print(" Norm gaz emb: %s"%(self.norm_gaz_emb)) print(" Norm gaz dropout: %s"%(self.gaz_dropout)) print(" Train instance number: %s"%(len(self.train_texts))) print(" Dev instance number: %s"%(len(self.dev_texts))) print(" Test instance number: %s"%(len(self.test_texts))) print(" Raw instance number: %s"%(len(self.raw_texts))) print(" Hyperpara iteration: %s"%(self.HP_iteration)) print(" Hyperpara batch size: %s"%(self.HP_batch_size)) print(" Hyperpara lr: %s"%(self.HP_lr)) print(" Hyperpara lr_decay: %s"%(self.HP_lr_decay)) print(" Hyperpara HP_clip: %s"%(self.HP_clip)) print(" Hyperpara momentum: %s"%(self.HP_momentum)) print(" Hyperpara hidden_dim: %s"%(self.HP_hidden_dim)) print(" Hyperpara dropout: %s"%(self.HP_dropout)) print(" Hyperpara lstm_layer: %s"%(self.HP_lstm_layer)) print(" Hyperpara bilstm: %s"%(self.HP_bilstm)) print(" Hyperpara GPU: %s"%(self.HP_gpu)) print(" Hyperpara use_gaz: %s"%(self.HP_use_gaz)) print(" Hyperpara fix gaz emb: %s"%(self.HP_fix_gaz_emb)) print(" Hyperpara use_char: %s"%(self.HP_use_char)) if self.HP_use_char: print(" Char_features: %s"%(self.char_features)) print("DATA SUMMARY END.") sys.stdout.flush() def refresh_label_alphabet(self, input_file): old_size = self.label_alphabet_size self.label_alphabet.clear(True) in_lines = open(input_file,'r').readlines() for line in in_lines: if len(line) > 2: pairs = line.strip().split() label = pairs[-1] self.label_alphabet.add(label) self.label_alphabet_size = self.label_alphabet.size() startS = False startB = False for label,_ in self.label_alphabet.iteritems(): if "S-" in label.upper(): startS = True elif "B-" in label.upper(): startB = True if startB: if startS: self.tagScheme = "BMES" else: self.tagScheme = "BIO" self.fix_alphabet() print("Refresh label alphabet finished: old:%s -> new:%s"%(old_size, self.label_alphabet_size)) def build_alphabet(self, input_file): in_lines = open(input_file,'r').readlines() for idx in range(len(in_lines)): line = in_lines[idx] if len(line) > 2: pairs = line.strip().split() word = pairs[0] if self.number_normalized: word = normalize_word(word) label = pairs[-1] self.label_alphabet.add(label) self.word_alphabet.add(word) if idx < len(in_lines) - 1 and len(in_lines[idx+1]) > 2: biword = word + in_lines[idx+1].strip().split()[0] else: biword = word + NULLKEY self.biword_alphabet.add(biword) for char in word: self.char_alphabet.add(char) self.word_alphabet_size = self.word_alphabet.size() self.biword_alphabet_size = self.biword_alphabet.size() self.char_alphabet_size = self.char_alphabet.size() self.label_alphabet_size = self.label_alphabet.size() startS = False startB = False for label,_ in self.label_alphabet.iteritems(): if "S-" in label.upper(): startS = True elif "B-" in label.upper(): startB = True if startB: if startS: self.tagScheme = "BMES" else: self.tagScheme = "BIO" def build_gaz_file(self, gaz_file): ## build gaz file,initial read gaz embedding file if gaz_file: fins = open(gaz_file, 'r').readlines() for fin in fins: fin = fin.strip().split()[0] if fin: self.gaz.insert(fin, "one_source") print ("Load gaz file: ", gaz_file, " total size:", self.gaz.size()) else: print ("Gaz file is None, load nothing") def build_gaz_alphabet(self, input_file): in_lines = open(input_file,'r').readlines() word_list = [] for line in in_lines: if len(line) > 3: word = line.split()[0] if self.number_normalized: word = normalize_word(word) word_list.append(word) else: w_length = len(word_list) for idx in range(w_length): matched_entity = self.gaz.enumerateMatchList(word_list[idx:]) for entity in matched_entity: # print entity, self.gaz.searchId(entity),self.gaz.searchType(entity) self.gaz_alphabet.add(entity) word_list = [] print ("gaz alphabet size:", self.gaz_alphabet.size()) def fix_alphabet(self): self.word_alphabet.close() self.biword_alphabet.close() self.char_alphabet.close() self.label_alphabet.close() self.gaz_alphabet.close() def build_word_pretrain_emb(self, emb_path): print ("build word pretrain emb...") self.pretrain_word_embedding, self.word_emb_dim = build_pretrain_embedding(emb_path, self.word_alphabet, self.word_emb_dim, self.norm_word_emb) def build_biword_pretrain_emb(self, emb_path): print ("build biword pretrain emb...") self.pretrain_biword_embedding, self.biword_emb_dim = build_pretrain_embedding(emb_path, self.biword_alphabet, self.biword_emb_dim, self.norm_biword_emb) def build_gaz_pretrain_emb(self, emb_path): print ("build gaz pretrain emb...") self.pretrain_gaz_embedding, self.gaz_emb_dim = build_pretrain_embedding(emb_path, self.gaz_alphabet, self.gaz_emb_dim, self.norm_gaz_emb) def generate_instance(self, input_file, name): self.fix_alphabet() if name == "train": self.train_texts, self.train_Ids = read_seg_instance(input_file, self.word_alphabet, self.biword_alphabet, self.char_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) elif name == "dev": self.dev_texts, self.dev_Ids = read_seg_instance(input_file, self.word_alphabet, self.biword_alphabet, self.char_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) elif name == "test": self.test_texts, self.test_Ids = read_seg_instance(input_file, self.word_alphabet, self.biword_alphabet, self.char_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) elif name == "raw": self.raw_texts, self.raw_Ids = read_seg_instance(input_file, self.word_alphabet, self.biword_alphabet, self.char_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) else: print("Error: you can only generate train/dev/test instance! Illegal input:%s"%(name)) def generate_instance_with_gaz(self, input_file, name): self.fix_alphabet() if name == "train": self.train_texts, self.train_Ids = read_instance_with_gaz(input_file, self.gaz, self.word_alphabet, self.biword_alphabet, self.char_alphabet, self.gaz_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) elif name == "dev": self.dev_texts, self.dev_Ids = read_instance_with_gaz(input_file, self.gaz,self.word_alphabet, self.biword_alphabet, self.char_alphabet, self.gaz_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) elif name == "test": self.test_texts, self.test_Ids = read_instance_with_gaz(input_file, self.gaz, self.word_alphabet, self.biword_alphabet, self.char_alphabet, self.gaz_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) elif name == "raw": self.raw_texts, self.raw_Ids = read_instance_with_gaz(input_file, self.gaz, self.word_alphabet,self.biword_alphabet, self.char_alphabet, self.gaz_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) else: print("Error: you can only generate train/dev/test instance! Illegal input:%s"%(name)) def write_decoded_results(self, output_file, predict_results, name): fout = open(output_file,'w') sent_num = len(predict_results) content_list = [] if name == 'raw': content_list = self.raw_texts elif name == 'test': content_list = self.test_texts elif name == 'dev': content_list = self.dev_texts elif name == 'train': content_list = self.train_texts else: print("Error: illegal name during writing predict result, name should be within train/dev/test/raw !") assert(sent_num == len(content_list)) for idx in range(sent_num): sent_length = len(predict_results[idx]) for idy in range(sent_length): ## content_list[idx] is a list with [word, char, label] fout.write(content_list[idx][0][idy]+ " " + predict_results[idx][idy] + '\n') fout.write('\n') fout.close() print("Predict %s result has been written into file. %s"%(name, output_file))
class Data: def __init__(self): self.MAX_SENTENCE_LENGTH = 250 self.MAX_WORD_LENGTH = -1 self.number_normalized = True self.norm_word_emb = True self.norm_gaz_emb = False self.use_single = True self.word_alphabet = Alphabet('word') self.label_alphabet = Alphabet('label', True) self.gaz_lower = False self.gaz = Gazetteer(self.gaz_lower, self.use_single) self.gaz_alphabet = Alphabet('gaz') self.HP_fix_gaz_emb = False self.HP_use_gaz = True self.tagScheme = "NoSeg" self.char_features = "LSTM" self.train_texts = [] self.dev_texts = [] self.test_texts = [] self.raw_texts = [] self.train_Ids = [] self.dev_Ids = [] self.test_Ids = [] self.raw_Ids = [] self.train_golds = [] self.dev_golds = [] self.test_golds = [] self.raw_golds = [] self.word_emb_dim = 50 self.gaz_emb_dim = 100 self.gaz_dropout = 0.3 self.pretrain_word_embedding = None self.pretrain_gaz_embedding = None self.label_size = 0 self.word_alphabet_size = 0 self.label_alphabet_size = 0 ### hyperparameters self.HP_iteration = 100 self.HP_batch_size = 10 self.HP_hidden_dim = 100 self.HP_dropout = 0.3 self.HP_lstm_layer = 1 self.HP_bilstm = True self.HP_gpu = False self.HP_lr = 0.015 self.HP_lr_decay = 0.05 self.HP_clip = 5.0 self.HP_momentum = 0 self.gpu = False self.enty_dropout = 0.3 # self.cls_mode = 'sigmoid' # or softmax self.cls_mode = 'softmax' def show_data_summary(self): print("DATA SUMMARY START:") print(" Tag scheme: %s" % (self.tagScheme)) print(" MAX SENTENCE LENGTH: %s" % (self.MAX_SENTENCE_LENGTH)) print(" MAX WORD LENGTH: %s" % (self.MAX_WORD_LENGTH)) print(" Number normalized: %s" % (self.number_normalized)) print(" Word alphabet size: %s" % (self.word_alphabet_size)) print(" Gaz alphabet size: %s" % (self.gaz_alphabet.size())) print(" Label alphabet size: %s" % (self.label_alphabet_size)) print(" Word embedding size: %s" % (self.word_emb_dim)) print(" Gaz embedding size: %s" % (self.gaz_emb_dim)) print(" Norm word emb: %s" % (self.norm_word_emb)) print(" Norm gaz emb: %s" % (self.norm_gaz_emb)) print(" Norm gaz dropout: %s" % (self.gaz_dropout)) print(" Train instance number: %s" % (len(self.train_texts))) print(" Dev instance number: %s" % (len(self.dev_texts))) print(" Test instance number: %s" % (len(self.test_texts))) print(" Raw instance number: %s" % (len(self.raw_texts))) print(" Hyperpara iteration: %s" % (self.HP_iteration)) print(" Hyperpara batch size: %s" % (self.HP_batch_size)) print(" Hyperpara lr: %s" % (self.HP_lr)) print(" Hyperpara lr_decay: %s" % (self.HP_lr_decay)) print(" Hyperpara HP_clip: %s" % (self.HP_clip)) print(" Hyperpara momentum: %s" % (self.HP_momentum)) print(" Hyperpara hidden_dim: %s" % (self.HP_hidden_dim)) print(" Hyperpara dropout: %s" % (self.HP_dropout)) print(" Hyperpara lstm_layer: %s" % (self.HP_lstm_layer)) print(" Hyperpara bilstm: %s" % (self.HP_bilstm)) print(" Hyperpara GPU: %s" % (self.HP_gpu)) print(" Hyperpara use_gaz: %s" % (self.HP_use_gaz)) print(" Hyperpara fix gaz emb: %s" % (self.HP_fix_gaz_emb)) print("DATA SUMMARY END.") sys.stdout.flush() def build_alphabet(self, input_file): with open(input_file, 'r', encoding='utf-8') as f: lines = f.readlines() # each line format: word1 word2 ... wordn </tab> enty1_s enty1_end enty1_type true_or false </tab> enty2_s ... for line in lines: line = line.strip() if not line: continue items = line.split('\t') # items[0] are all words in sents for word in items[0].split(): if self.number_normalized: word = normalize_word(word) self.word_alphabet.add(word) # items[1] to item[n] are entities for entity in items[1:]: # we get the type self.label_alphabet.add(entity.split()[2]) self.word_alphabet_size = self.word_alphabet.size() self.label_alphabet_size = self.label_alphabet.size() self.tagScheme = 'BMES' def build_gaz_file(self, gaz_file): ## build gaz file,initial read gaz embedding file ## we only get the word, do not read embedding this step if gaz_file: with open(gaz_file, 'r', encoding='utf-8') as f: lines = f.readlines() for line in lines: word = line.strip().split()[0] if word: self.gaz.insert(word, 'one_source') print("Load gaz file: ", gaz_file, " total size:", self.gaz.size()) else: print("Gaz file is None, load nothing") def build_gaz_alphabet(self, input_file): """ based on the train, dev, test file, we only save the seb-sequence word that my be appear """ with open(input_file, 'r', encoding='utf-8') as f: lines = f.readlines() for line in lines: line = line.strip() if not line: continue word_list = [] # 1.get word list items = line.split('\t') for word in items[0].split(): if self.number_normalized: word = normalize_word(word) word_list.append(word) # 2.get gazs in sentence w_length = len(word_list) for idx in range(w_length): matched_entity = self.gaz.enumerateMatchList(word_list[idx:]) for gaz_word in matched_entity: self.gaz_alphabet.add(gaz_word) print("gaz alphabet size:", self.gaz_alphabet.size()) def build_word_pretrain_emb(self, emb_path): print("build word pretrain emb...") self.pretrain_word_embedding, self.word_emb_dim = build_pretrain_embedding(emb_path, self.word_alphabet, self.word_emb_dim, self.norm_word_emb) def build_gaz_pretrain_emb(self, emb_path): print("build gaz pretrain emb...") self.pretrain_gaz_embedding, self.gaz_emb_dim = build_pretrain_embedding(emb_path, self.gaz_alphabet, self.gaz_emb_dim, self.norm_gaz_emb) def generate_word_instance(self, input_file, name): """ every instance consist of: word_ids, start_positions, end_positions, labels, flags """ if name == "train": self.train_texts, self.train_Ids = read_word_instance(input_file, self.word_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) elif name == "dev": self.dev_texts, self.dev_Ids = read_word_instance(input_file, self.word_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) elif name == "test": self.test_texts, self.test_Ids = read_word_instance(input_file, self.word_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) elif name == "raw": self.raw_texts, self.raw_Ids = read_word_instance(input_file, self.word_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) else: print("Error: you can only generate train/dev/test instance! Illegal input:%s" % (name)) def generate_instance_with_gaz(self, input_file, name): """ every instance consist of: word_ids, gaz_ids, reverse_ids, start_positions, end_positions, labels, flags """ if name == "train": self.train_texts, self.train_Ids = read_word_instance_with_gaz(input_file, self.gaz, self.word_alphabet, self.gaz_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH, self.use_single) elif name == "dev": self.dev_texts, self.dev_Ids = read_word_instance_with_gaz(input_file, self.gaz, self.word_alphabet, self.gaz_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH, self.use_single) elif name == "test": self.test_texts, self.test_Ids = read_word_instance_with_gaz(input_file, self.gaz, self.word_alphabet, self.gaz_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH, self.use_single) elif name == "raw": self.raw_texts, self.raw_Ids = read_word_instance_with_gaz(input_file, self.gaz, self.word_alphabet, self.gaz_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH, self.use_single) else: print("Error: you can only generate train/dev/test instance! Illegal input:%s" % (name)) def generate_golds(self, input_file, name): if name == 'train': self.train_golds = read_word_instance_golds(input_file, self.MAX_SENTENCE_LENGTH) assert len(self.train_Ids) == len(self.train_golds), (len(self.train_Ids), len(self.train_golds)) elif name == 'dev': self.dev_golds = read_word_instance_golds(input_file, self.MAX_SENTENCE_LENGTH) assert len(self.dev_Ids) == len(self.dev_golds), (len(self.dev_Ids), len(self.dev_golds)) elif name == 'test': self.test_golds = read_word_instance_golds(input_file, self.MAX_SENTENCE_LENGTH) assert len(self.test_Ids) == len(self.test_golds), (len(self.test_Ids), len(self.test_golds)) elif name == 'raw': self.raw_golds = read_word_instance_golds(input_file, self.MAX_SENTENCE_LENGTH) assert len(self.raw_Ids) == len(self.raw_golds), (len(self.raw_Ids), len(self.raw_golds))
def __init__(self): self.MAX_SENTENCE_LENGTH = 250 self.MAX_WORD_LENGTH = -1 self.number_normalized = True self.norm_char_emb = True self.norm_bichar_emb = True self.norm_gaz_emb = False self.use_single = False self.char_alphabet = Alphabet('char') self.bichar_alphabet = Alphabet('bichar') self.label_alphabet = Alphabet('label', True) self.gaz_lower = False self.gaz = Gazetteer(self.gaz_lower, self.use_single) self.gaz_alphabet = Alphabet('gaz') self.HP_fix_gaz_emb = False self.HP_use_gaz = True self.tagScheme = "NoSeg" self.train_texts = [] self.dev_texts = [] self.test_texts = [] self.raw_texts = [] self.train_Ids = [] self.dev_Ids = [] self.test_Ids = [] self.raw_Ids = [] self.use_bichar = False self.char_emb_dim = 50 self.bichar_emb_dim = 50 self.gaz_emb_dim = 50 self.posi_emb_dim = 30 self.gaz_dropout = 0.5 self.pretrain_char_embedding = None self.pretrain_bichar_embedding = None self.pretrain_gaz_embedding = None self.label_size = 0 self.char_alphabet_size = 0 self.bichar_alphabet_size = 0 self.character_alphabet_size = 0 self.label_alphabet_size = 0 # hyper parameters self.HP_iteration = 100 self.HP_batch_size = 1 # self.HP_char_hidden_dim = 50 # int. Character hidden vector dimension for character sequence layer. self.HP_hidden_dim = 200 # int. Char hidden vector dimension for word sequence layer. self.HP_dropout = 0.5 # float. Dropout probability. self.HP_lstm_layer = 1 # int. LSTM layer number for word sequence layer. self.HP_bilstm = True # boolen. If use bidirection lstm for word seuquence layer. self.HP_gpu = False # Word level LSTM models (e.g. char LSTM + word LSTM + CRF) would prefer a `lr` around 0.015. # Word level CNN models (e.g. char LSTM + word CNN + CRF) would prefer a `lr` around 0.005 and with more iterations. self.HP_lr = 0.015 self.HP_lr_decay = 0.05 # float. Learning rate decay rate, only works when optimizer=SGD. self.HP_clip = 1.0 # float. Clip the gradient which is larger than the setted number. self.HP_momentum = 0 # float. Momentum self.HP_use_posi = False self.HP_num_layer = 4 self.HP_rethink_iter = 2 self.model_name = 'CNN_model' self.posi_alphabet_size = 0
class Data: def __init__(self): self.MAX_SENTENCE_LENGTH = 250 self.MAX_WORD_LENGTH = -1 self.number_normalized = True self.norm_char_emb = True self.norm_bichar_emb = True self.norm_gaz_emb = False self.use_single = False self.char_alphabet = Alphabet('char') self.bichar_alphabet = Alphabet('bichar') self.label_alphabet = Alphabet('label', True) self.gaz_lower = False self.gaz = Gazetteer(self.gaz_lower, self.use_single) self.gaz_alphabet = Alphabet('gaz') self.HP_fix_gaz_emb = False self.HP_use_gaz = True self.tagScheme = "NoSeg" self.train_texts = [] self.dev_texts = [] self.test_texts = [] self.raw_texts = [] self.train_Ids = [] self.dev_Ids = [] self.test_Ids = [] self.raw_Ids = [] self.use_bichar = False self.char_emb_dim = 50 self.bichar_emb_dim = 50 self.gaz_emb_dim = 50 self.posi_emb_dim = 30 self.gaz_dropout = 0.5 self.pretrain_char_embedding = None self.pretrain_bichar_embedding = None self.pretrain_gaz_embedding = None self.label_size = 0 self.char_alphabet_size = 0 self.bichar_alphabet_size = 0 self.character_alphabet_size = 0 self.label_alphabet_size = 0 # hyper parameters self.HP_iteration = 100 self.HP_batch_size = 1 # self.HP_char_hidden_dim = 50 # int. Character hidden vector dimension for character sequence layer. self.HP_hidden_dim = 200 # int. Char hidden vector dimension for word sequence layer. self.HP_dropout = 0.5 # float. Dropout probability. self.HP_lstm_layer = 1 # int. LSTM layer number for word sequence layer. self.HP_bilstm = True # boolen. If use bidirection lstm for word seuquence layer. self.HP_gpu = False # Word level LSTM models (e.g. char LSTM + word LSTM + CRF) would prefer a `lr` around 0.015. # Word level CNN models (e.g. char LSTM + word CNN + CRF) would prefer a `lr` around 0.005 and with more iterations. self.HP_lr = 0.015 self.HP_lr_decay = 0.05 # float. Learning rate decay rate, only works when optimizer=SGD. self.HP_clip = 1.0 # float. Clip the gradient which is larger than the setted number. self.HP_momentum = 0 # float. Momentum self.HP_use_posi = False self.HP_num_layer = 4 self.HP_rethink_iter = 2 self.model_name = 'CNN_model' self.posi_alphabet_size = 0 def show_data_summary(self): print("DATA SUMMARY START:") print(" Tag scheme: %s" % (self.tagScheme)) print(" MAX SENTENCE LENGTH: %s" % (self.MAX_SENTENCE_LENGTH)) print(" MAX WORD LENGTH: %s" % (self.MAX_WORD_LENGTH)) print(" Number normalized: %s" % (self.number_normalized)) print(" Use bigram: %s" % (self.use_bichar)) print(" Char alphabet size: %s" % (self.char_alphabet_size)) print(" Bichar alphabet size: %s" % (self.bichar_alphabet_size)) print(" Gaz alphabet size: %s" % (self.gaz_alphabet.size())) print(" Label alphabet size: %s" % (self.label_alphabet_size)) print(" Word embedding size: %s" % (self.char_emb_dim)) print(" Bichar embedding size: %s" % (self.bichar_emb_dim)) print(" Gaz embedding size: %s" % (self.gaz_emb_dim)) print(" Norm word emb: %s" % (self.norm_char_emb)) print(" Norm bichar emb: %s" % (self.norm_bichar_emb)) print(" Norm gaz emb: %s" % (self.norm_gaz_emb)) print(" Norm gaz dropout: %s" % (self.gaz_dropout)) print(" Train instance number: %s" % (len(self.train_texts))) print(" Dev instance number: %s" % (len(self.dev_texts))) print(" Test instance number: %s" % (len(self.test_texts))) print(" Raw instance number: %s" % (len(self.raw_texts))) print(" Hyperpara iteration: %s" % (self.HP_iteration)) print(" Hyperpara batch size: %s" % (self.HP_batch_size)) print(" Hyperpara lr: %s" % (self.HP_lr)) print(" Hyperpara lr_decay: %s" % (self.HP_lr_decay)) print(" Hyperpara HP_clip: %s" % (self.HP_clip)) print(" Hyperpara momentum: %s" % (self.HP_momentum)) print(" Hyperpara hidden_dim: %s" % (self.HP_hidden_dim)) print(" Hyperpara dropout: %s" % (self.HP_dropout)) print(" Hyperpara lstm_layer: %s" % (self.HP_lstm_layer)) print(" Hyperpara bilstm: %s" % (self.HP_bilstm)) print(" Hyperpara GPU: %s" % (self.HP_gpu)) print(" Hyperpara use_gaz: %s" % (self.HP_use_gaz)) print(" Hyperpara fix gaz emb: %s" % (self.HP_fix_gaz_emb)) print("DATA SUMMARY END.") sys.stdout.flush() def refresh_label_alphabet(self, input_file): old_size = self.label_alphabet_size self.label_alphabet.clear(True) in_lines = open(input_file, 'r').readlines() for line in in_lines: if len(line) > 2: pairs = line.strip().split() label = pairs[-1] self.label_alphabet.add(label) self.label_alphabet_size = self.label_alphabet.size() start_s = False start_b = False for label, _ in self.label_alphabet.iteritems(): if "S-" in label.upper(): start_s = True elif "B-" in label.upper(): start_b = True if start_b: if start_s: self.tagScheme = "BMES" else: self.tagScheme = "BIO" self.fix_alphabet() print("Refresh label alphabet finished: old:%s -> new:%s" % (old_size, self.label_alphabet_size)) # "陈 B-PER" def build_alphabet(self, input_file): if input_file is None or not os.path.isfile(input_file): # print('[' + sys._getframe().f_code.co_name + '] file ' + str(input_file) + "can not be found or is not a file address") return with codecs.open(input_file, 'r', 'utf-8') as fr: in_lines = fr.readlines() seqlen = 0 for idx in range(len(in_lines)): line = in_lines[idx] # '陈 B-PER\n' # 行不空 则加入label word bichar char if len(line) > 2: # if sequence labeling data format i.e. CoNLL 2003 pairs = line.strip().split() # list ['陈','B-PER'] char = pairs[0] # '陈' if self.number_normalized: # 数字转0 char = normalize_char(char) label = pairs[-1] # "B-PER" # build feature alphabet self.label_alphabet.add(label) self.char_alphabet.add(char) if idx < len(in_lines) - 1 and len(in_lines[idx + 1]) > 2: bichar = char + in_lines[idx + 1].strip().split()[0] # 陈元 else: bichar = char + NULLKEY self.bichar_alphabet.add(bichar) seqlen += 1 else: self.posi_alphabet_size = max(seqlen, self.posi_alphabet_size) seqlen = 0 self.char_alphabet_size = self.char_alphabet.size() self.bichar_alphabet_size = self.bichar_alphabet.size() self.label_alphabet_size = self.label_alphabet.size() start_s = False start_b = False for label, _ in self.label_alphabet.iteritems(): if "S-" in label.upper(): start_s = True elif "B-" in label.upper(): start_b = True if start_b: if start_s: self.tagScheme = "BMES" else: self.tagScheme = "BIO" def build_gaz_file(self, gaz_file): # build gaz file, initial read gaz embedding file if gaz_file: with codecs.open(gaz_file, 'r', 'utf-8') as fr: fins = fr.readlines() for fin in fins: fin = fin.strip().split()[0] if fin: self.gaz.insert(fin, "one_source") print("Load gaz file: ", gaz_file, " total size:", self.gaz.size()) else: print('[' + sys._getframe().f_code.co_name + '] ' + "Gaz file is None, load nothing") def build_gaz_alphabet(self, input_file): if input_file is None or not os.path.isfile(input_file): # print('[' + sys._getframe().f_code.co_name + '] file ' + str(input_file) + "can not be found or is not a file address") return with codecs.open(input_file, 'r', 'utf-8') as fr: in_lines = fr.readlines() word_list = [] for line in in_lines: if len(line) > 3: word = line.split()[0] if self.number_normalized: word = normalize_char(word) word_list.append(word) else: w_length = len(word_list) for idx in range(w_length): matched_entity = self.gaz.enumerateMatchList( word_list[idx:]) for entity in matched_entity: # print entity, self.gaz.searchId(entity),self.gaz.searchType(entity) self.gaz_alphabet.add(entity) word_list = [] print("gaz alphabet size:", self.gaz_alphabet.size()) # Alphabet def fix_alphabet(self): self.char_alphabet.close() # alphabet.keep_growing=False self.bichar_alphabet.close() self.label_alphabet.close() self.gaz_alphabet.close() def build_char_pretrain_emb(self, emb_path): print("build char pretrain emb...") self.pretrain_char_embedding, self.char_emb_dim = build_pretrain_embedding( emb_path, self.char_alphabet, self.char_emb_dim, self.norm_char_emb) def build_bichar_pretrain_emb(self, emb_path): print("build bichar pretrain emb...") self.pretrain_bichar_embedding, self.bichar_emb_dim = build_pretrain_embedding( emb_path, self.bichar_alphabet, self.bichar_emb_dim, self.norm_bichar_emb) def build_gaz_pretrain_emb(self, emb_path): print("build gaz pretrain emb...") self.pretrain_gaz_embedding, self.gaz_emb_dim = build_pretrain_embedding( emb_path, self.gaz_alphabet, self.gaz_emb_dim, self.norm_gaz_emb) def generate_instance(self, input_file, name): self.fix_alphabet() if name == "train": self.train_texts, self.train_Ids = read_seg_instance( input_file, self.char_alphabet, self.bichar_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) elif name == "dev": self.dev_texts, self.dev_Ids = read_seg_instance( input_file, self.char_alphabet, self.bichar_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) elif name == "test": self.test_texts, self.test_Ids = read_seg_instance( input_file, self.char_alphabet, self.bichar_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) else: print( "Error: you can only generate train/dev/test instance! Illegal input:%s" % name) def generate_instance_with_gaz(self, input_file, name): self.fix_alphabet() if name == "train": self.train_texts, self.train_Ids = read_instance_with_gaz( input_file, self.gaz, self.char_alphabet, self.bichar_alphabet, self.gaz_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) elif name == "dev": self.dev_texts, self.dev_Ids = read_instance_with_gaz( input_file, self.gaz, self.char_alphabet, self.bichar_alphabet, self.gaz_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) elif name == "test": self.test_texts, self.test_Ids = read_instance_with_gaz( input_file, self.gaz, self.char_alphabet, self.bichar_alphabet, self.gaz_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) else: print( "Error: you can only generate train/dev/test instance! Illegal input:%s" % name) def generate_instance_with_gaz_2(self, input_file, name): self.fix_alphabet() if name == "train": self.train_texts, self.train_Ids = read_instance_with_gaz_2( self.HP_num_layer, input_file, self.gaz, self.char_alphabet, self.bichar_alphabet, self.gaz_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) elif name == "dev": self.dev_texts, self.dev_Ids = read_instance_with_gaz_2( self.HP_num_layer, input_file, self.gaz, self.char_alphabet, self.bichar_alphabet, self.gaz_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) elif name == "test": self.test_texts, self.test_Ids = read_instance_with_gaz_2( self.HP_num_layer, input_file, self.gaz, self.char_alphabet, self.bichar_alphabet, self.gaz_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH) else: print( "Error: you can only generate train/dev/test instance! Illegal input:%s" % (name)) def generate_instance_with_gaz_3(self, input_file, name): self.fix_alphabet() if name == "train": self.train_texts, self.train_Ids = read_instance_with_gaz_3( input_file, self.gaz, self.char_alphabet, self.bichar_alphabet, self.gaz_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH, self.use_single) elif name == "dev": self.dev_texts, self.dev_Ids = read_instance_with_gaz_3( input_file, self.gaz, self.char_alphabet, self.bichar_alphabet, self.gaz_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH, self.use_single) elif name == "test": self.test_texts, self.test_Ids = read_instance_with_gaz_3( input_file, self.gaz, self.char_alphabet, self.bichar_alphabet, self.gaz_alphabet, self.label_alphabet, self.number_normalized, self.MAX_SENTENCE_LENGTH, self.use_single) else: print( "Error: you can only generate train/dev/test instance! Illegal input:%s" % (name)) def write_decoded_results(self, output_file, predict_results, name): fout = open(output_file, 'w') sent_num = len(predict_results) content_list = [] if name == 'test': content_list = self.test_texts elif name == 'dev': content_list = self.dev_texts elif name == 'train': content_list = self.train_texts else: print( "Error: illegal name during writing predict result, name should be within train/dev/test/raw !" ) assert (sent_num == len(content_list)) for idx in range(sent_num): sent_length = len(predict_results[idx]) for idy in range(sent_length): ## content_list[idx] is a list with [word, char, label] fout.write(content_list[idx][0][idy].encode('utf-8') + " " + predict_results[idx][idy] + '\n') fout.write('\n') fout.close() print("Predict %s result has been written into file. %s" % (name, output_file))