Esempio n. 1
0
def trainer(opt):
    # Set DDP variables
    opt.total_batch_size = opt.batch_size
    opt.world_size = int(
        os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
    opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
    set_logging(opt.global_rank)
    if opt.global_rank in [-1, 0]:
        check_git_status()

    # Resume
    if opt.resume:  # resume an interrupted run
        ckpt = opt.resume if isinstance(
            opt.resume,
            str) else get_latest_run()  # specified or most recent path
        log_dir = Path(ckpt).parent.parent  # runs/exp0
        assert os.path.isfile(
            ckpt), 'ERROR: --resume checkpoint does not exist'
        with open(log_dir / 'opt.yaml') as f:
            opt = argparse.Namespace(**yaml.load(
                f, Loader=yaml.FullLoader))  # replace
        opt.cfg, opt.weights, opt.resume = '', ckpt, True
        logger.info('Resuming training from %s' % ckpt)

    else:
        # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
        opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(
            opt.cfg), check_file(opt.hyp)  # check files
        assert len(opt.cfg) or len(
            opt.weights), 'either --cfg or --weights must be specified'
        opt.img_size.extend(
            [opt.img_size[-1]] *
            (2 - len(opt.img_size)))  # extend to 2 sizes (train, test)
        log_dir = increment_dir(Path(opt.logdir) / 'exp',
                                opt.name)  # runs/exp1

    device = select_device(opt.device, batch_size=opt.batch_size)

    # DDP mode
    if opt.local_rank != -1:
        assert torch.cuda.device_count() > opt.local_rank
        torch.cuda.set_device(opt.local_rank)
        device = torch.device('cuda', opt.local_rank)
        dist.init_process_group(backend='nccl',
                                init_method='env://')  # distributed backend
        assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
        opt.batch_size = opt.total_batch_size // opt.world_size

    logger.info(opt)
    with open(opt.hyp) as f:
        hyp = yaml.load(f, Loader=yaml.FullLoader)  # load hyps

    # Train
    if not opt.evolve:
        tb_writer = None
        if opt.global_rank in [-1, 0]:
            logger.info(
                'Start Tensorboard with "tensorboard --logdir %s", view at http://localhost:6006/'
                % opt.logdir)
            tb_writer = SummaryWriter(log_dir=log_dir)  # runs/exp0

        train(hyp, opt, device, tb_writer)

    # Evolve hyperparameters (optional)
    else:
        # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
        meta = {
            'lr0':
            (1, 1e-5, 1e-1),  # initial learning rate (SGD=1E-2, Adam=1E-3)
            'lrf':
            (1, 0.01, 1.0),  # final OneCycleLR learning rate (lr0 * lrf)
            'momentum': (0.3, 0.6, 0.98),  # SGD momentum/Adam beta1
            'weight_decay': (1, 0.0, 0.001),  # optimizer weight decay
            'warmup_epochs': (1, 0.0, 5.0),  # warmup epochs (fractions ok)
            'warmup_momentum': (1, 0.0, 0.95),  # warmup initial momentum
            'warmup_bias_lr': (1, 0.0, 0.2),  # warmup initial bias lr
            'giou': (1, 0.02, 0.2),  # GIoU loss gain
            'cls': (1, 0.2, 4.0),  # cls loss gain
            'cls_pw': (1, 0.5, 2.0),  # cls BCELoss positive_weight
            'obj': (1, 0.2, 4.0),  # obj loss gain (scale with pixels)
            'obj_pw': (1, 0.5, 2.0),  # obj BCELoss positive_weight
            'iou_t': (0, 0.1, 0.7),  # IoU training threshold
            'anchor_t': (1, 2.0, 8.0),  # anchor-multiple threshold
            'anchors': (2, 2.0, 10.0),  # anchors per output grid (0 to ignore)
            'fl_gamma':
            (0, 0.0, 2.0),  # focal loss gamma (efficientDet default gamma=1.5)
            'hsv_h': (1, 0.0, 0.1),  # image HSV-Hue augmentation (fraction)
            'hsv_s': (1, 0.0,
                      0.9),  # image HSV-Saturation augmentation (fraction)
            'hsv_v': (1, 0.0, 0.9),  # image HSV-Value augmentation (fraction)
            'degrees': (1, 0.0, 45.0),  # image rotation (+/- deg)
            'translate': (1, 0.0, 0.9),  # image translation (+/- fraction)
            'scale': (1, 0.0, 0.9),  # image scale (+/- gain)
            'shear': (1, 0.0, 10.0),  # image shear (+/- deg)
            'perspective':
            (0, 0.0, 0.001),  # image perspective (+/- fraction), range 0-0.001
            'flipud': (1, 0.0, 1.0),  # image flip up-down (probability)
            'fliplr': (0, 0.0, 1.0),  # image flip left-right (probability)
            'mosaic': (1, 0.0, 1.0),  # image mixup (probability)
            'mixup': (1, 0.0, 1.0)
        }  # image mixup (probability)

        assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
        opt.notest, opt.nosave = True, True  # only test/save final epoch
        # ei = [isinstance(x, (int, float)) for x in hyp.values()]  # evolvable indices
        yaml_file = Path(
            'runs/evolve/hyp_evolved.yaml')  # save best result here
        if opt.bucket:
            os.system('gsutil cp gs://%s/evolve.txt .' %
                      opt.bucket)  # download evolve.txt if exists

        for _ in range(300):  # generations to evolve
            if os.path.exists(
                    'evolve.txt'
            ):  # if evolve.txt exists: select best hyps and mutate
                # Select parent(s)
                parent = 'single'  # parent selection method: 'single' or 'weighted'
                x = np.loadtxt('evolve.txt', ndmin=2)
                n = min(5, len(x))  # number of previous results to consider
                x = x[np.argsort(-fitness(x))][:n]  # top n mutations
                w = fitness(x) - fitness(x).min()  # weights
                if parent == 'single' or len(x) == 1:
                    # x = x[random.randint(0, n - 1)]  # random selection
                    x = x[random.choices(range(n),
                                         weights=w)[0]]  # weighted selection
                elif parent == 'weighted':
                    x = (x * w.reshape(
                        n, 1)).sum(0) / w.sum()  # weighted combination

                # Mutate
                mp, s = 0.8, 0.2  # mutation probability, sigma
                npr = np.random
                npr.seed(int(time.time()))
                g = np.array([x[0] for x in meta.values()])  # gains 0-1
                ng = len(meta)
                v = np.ones(ng)
                while all(
                        v == 1
                ):  # mutate until a change occurs (prevent duplicates)
                    v = (g * (npr.random(ng) < mp) * npr.randn(ng) *
                         npr.random() * s + 1).clip(0.3, 3.0)
                for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)
                    hyp[k] = float(x[i + 7] * v[i])  # mutate

            # Constrain to limits
            for k, v in meta.items():
                hyp[k] = max(hyp[k], v[1])  # lower limit
                hyp[k] = min(hyp[k], v[2])  # upper limit
                hyp[k] = round(hyp[k], 5)  # significant digits

            # Train mutation
            results = train(hyp.copy(), opt, device)

            # Write mutation results
            print_mutation(hyp.copy(), results, yaml_file, opt.bucket)

        # Plot results
        plot_evolution(yaml_file)
        print(
            'Hyperparameter evolution complete. Best results saved as: %s\nCommand to train a new model with these '
            'hyperparameters: $ python train.py --hyp %s' %
            (yaml_file, yaml_file))
Esempio n. 2
0
                npr.seed(int(time.time()))
                g = np.array([x[0] for x in meta.values()])  # gains 0-1
                ng = len(meta)
                v = np.ones(ng)
                while all(
                        v == 1
                ):  # mutate until a change occurs (prevent duplicates)
                    v = (g * (npr.random(ng) < mp) * npr.randn(ng) *
                         npr.random() * s + 1).clip(0.3, 3.0)
                for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)
                    hyp[k] = float(x[i + 7] * v[i])  # mutate

            # Constrain to limits
            for k, v in meta.items():
                hyp[k] = max(hyp[k], v[1])  # lower limit
                hyp[k] = min(hyp[k], v[2])  # upper limit
                hyp[k] = round(hyp[k], 5)  # significant digits

            # Train mutation
            results = train(hyp.copy(), opt, device)

            # Write mutation results
            print_mutation(hyp.copy(), results, yaml_file, opt.bucket)

        # Plot results
        plot_evolution(yaml_file)
        print(
            'Hyperparameter evolution complete. Best results saved as: %s\nCommand to train a new model with these '
            'hyperparameters: $ python train.py --hyp %s' %
            (yaml_file, yaml_file))
Esempio n. 3
0
def main(override_args=None):

    parser = argparse.ArgumentParser()

    parser.add_argument('--weights',
                        type=str,
                        default='',
                        help='initial weights path')
    parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
    parser.add_argument('--hyp',
                        type=str,
                        default='data/hyp.scratch.yaml',
                        help='hyperparameters path')
    parser.add_argument('--epochs', type=int, default=300)
    parser.add_argument('--batch-size',
                        type=int,
                        default=16,
                        help='total batch size for all GPUs')
    parser.add_argument('--img-size',
                        nargs='+',
                        type=int,
                        default=[640, 640],
                        help='[train, test] image sizes')
    parser.add_argument('--rect',
                        action='store_true',
                        help='rectangular training')
    parser.add_argument('--resume',
                        nargs='?',
                        const=True,
                        default=False,
                        help='resume most recent training')
    parser.add_argument('--nosave',
                        action='store_true',
                        help='only save final checkpoint')
    parser.add_argument('--notest',
                        action='store_true',
                        help='only test final epoch')
    parser.add_argument('--noautoanchor',
                        action='store_true',
                        help='disable autoanchor check')
    parser.add_argument('--evolve',
                        action='store_true',
                        help='evolve hyperparameters')
    parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
    parser.add_argument('--cache-images',
                        action='store_true',
                        help='cache images for faster training')
    parser.add_argument('--image-weights',
                        action='store_true',
                        help='use weighted image selection for training')
    parser.add_argument(
        '--name',
        default='',
        help='renames experiment folder exp{N} to exp{N}_{name} if supplied')
    parser.add_argument('--device',
                        default='',
                        help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--multi-scale',
                        action='store_true',
                        help='vary img-size +/- 50%%')
    parser.add_argument('--single-cls',
                        action='store_true',
                        help='train as single-class dataset')
    parser.add_argument('--adam',
                        action='store_true',
                        help='use torch.optim.Adam() optimizer')
    parser.add_argument('--sync-bn',
                        action='store_true',
                        help='use SyncBatchNorm, only available in DDP mode')
    parser.add_argument('--local_rank',
                        type=int,
                        default=-1,
                        help='DDP parameter, do not modify')
    parser.add_argument('--logdir',
                        type=str,
                        default='runs/',
                        help='logging directory')
    parser.add_argument('--log-imgs',
                        type=int,
                        default=10,
                        help='number of images for W&B logging, max 100')
    parser.add_argument('--workers',
                        type=int,
                        default=8,
                        help='maximum number of dataloader workers')

    # changed/added parameters:

    parser.add_argument('--data',
                        type=str,
                        default='data/coco128.yaml',
                        help='data.yaml path OR path to the HHI Json Dataset')
    # here you can set the path to the "yaml" file that describes the dataset, just as before
    # but if you give a path to a JSON file, then it will be read and parsed as a HHI Json Format Dataset metadata file

    parser.add_argument(
        '--val-size',
        type=float,
        default=0.05,
        help='fraction of the Json Dataset, used for validation')
    # if using the HHI Json Format Dataset format, this sets the ratio of the dataset, that will be used for validation (random samples)

    parser.add_argument(
        '--classes',
        type=str,
        default='rectangle',
        help='limit training to only these class or class list',
        nargs="+")
    # if using the HHI Json Format Dataset, normally all annotations of the 'rectangle' type will be used for training,
    # but you can limit the training to only specific classes, and give them as a space-separated list
    # (use ""-quotation marks, if a class name has whitespaces), e.g.:
    # python train.py --data ... --classes gec_object bad_gec_object "screw hole" hand "open hand" --val_size 0.05 ...

    opt = parser.parse_args()

    # ---------------
    # override the command-line parameters:
    if override_args is not None:
        opt.data = override_args.data
        opt.cfg = override_args.cfg
        opt.multi_scale = override_args.multi_scale
        opt.val_size = override_args.val_size
        opt.epochs = override_args.epochs
        opt.batch_size = override_args.batch_size
        opt.classes = override_args.classes
        opt.device = override_args.device
    # ---------------

    # Set DDP variables
    opt.total_batch_size = opt.batch_size
    opt.world_size = int(
        os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
    opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
    set_logging(opt.global_rank)
    if opt.global_rank in [-1, 0]:
        check_git_status()

    # Resume
    if opt.resume:  # resume an interrupted run
        ckpt = opt.resume if isinstance(
            opt.resume,
            str) else get_latest_run()  # specified or most recent path
        log_dir = Path(ckpt).parent.parent  # runs/exp0
        assert os.path.isfile(
            ckpt), 'ERROR: --resume checkpoint does not exist'
        with open(log_dir / 'opt.yaml') as f:
            opt = argparse.Namespace(**yaml.load(
                f, Loader=yaml.FullLoader))  # replace
        opt.cfg, opt.weights, opt.resume = '', ckpt, True
        logger.info('Resuming training from %s' % ckpt)

    else:
        # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
        opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(
            opt.cfg), check_file(opt.hyp)  # check files
        assert len(opt.cfg) or len(
            opt.weights), 'either --cfg or --weights must be specified'
        opt.img_size.extend(
            [opt.img_size[-1]] *
            (2 - len(opt.img_size)))  # extend to 2 sizes (train, test)
        log_dir = increment_dir(Path(opt.logdir) / 'exp',
                                opt.name)  # runs/exp1

    # DDP mode
    device = select_device(opt.device, batch_size=opt.batch_size)
    if opt.local_rank != -1:
        assert torch.cuda.device_count() > opt.local_rank
        torch.cuda.set_device(opt.local_rank)
        device = torch.device('cuda', opt.local_rank)
        dist.init_process_group(backend='nccl',
                                init_method='env://')  # distributed backend
        assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
        opt.batch_size = opt.total_batch_size // opt.world_size

    # Hyperparameters
    with open(opt.hyp) as f:
        hyp = yaml.load(f, Loader=yaml.FullLoader)  # load hyps
        if 'box' not in hyp:
            warn(
                'Compatibility: %s missing "box" which was renamed from "giou" in %s'
                % (opt.hyp, 'https://github.com/ultralytics/yolov5/pull/1120'))
            hyp['box'] = hyp.pop('giou')

    # Train
    logger.info(opt)
    if not opt.evolve:
        tb_writer, wandb = None, None  # init loggers
        if opt.global_rank in [-1, 0]:
            # Tensorboard
            logger.info(
                f'Start Tensorboard with "tensorboard --logdir {opt.logdir}", view at http://localhost:6006/'
            )
            tb_writer = SummaryWriter(log_dir=log_dir)  # runs/exp0

            # W&B
            try:
                import wandb

                assert os.environ.get('WANDB_DISABLED') != 'true'
                logger.info(
                    "Weights & Biases logging enabled, to disable set os.environ['WANDB_DISABLED'] = 'true'"
                )
            except (ImportError, AssertionError):
                opt.log_imgs = 0
                logger.info(
                    "Install Weights & Biases for experiment logging via 'pip install wandb' (recommended)"
                )

        train(hyp, opt, device, tb_writer, wandb)

    # Evolve hyperparameters (optional)
    else:
        # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
        meta = {
            'lr0':
            (1, 1e-5, 1e-1),  # initial learning rate (SGD=1E-2, Adam=1E-3)
            'lrf':
            (1, 0.01, 1.0),  # final OneCycleLR learning rate (lr0 * lrf)
            'momentum': (0.3, 0.6, 0.98),  # SGD momentum/Adam beta1
            'weight_decay': (1, 0.0, 0.001),  # optimizer weight decay
            'warmup_epochs': (1, 0.0, 5.0),  # warmup epochs (fractions ok)
            'warmup_momentum': (1, 0.0, 0.95),  # warmup initial momentum
            'warmup_bias_lr': (1, 0.0, 0.2),  # warmup initial bias lr
            'box': (1, 0.02, 0.2),  # box loss gain
            'cls': (1, 0.2, 4.0),  # cls loss gain
            'cls_pw': (1, 0.5, 2.0),  # cls BCELoss positive_weight
            'obj': (1, 0.2, 4.0),  # obj loss gain (scale with pixels)
            'obj_pw': (1, 0.5, 2.0),  # obj BCELoss positive_weight
            'iou_t': (0, 0.1, 0.7),  # IoU training threshold
            'anchor_t': (1, 2.0, 8.0),  # anchor-multiple threshold
            'anchors': (2, 2.0, 10.0),  # anchors per output grid (0 to ignore)
            'fl_gamma':
            (0, 0.0, 2.0),  # focal loss gamma (efficientDet default gamma=1.5)
            'hsv_h': (1, 0.0, 0.1),  # image HSV-Hue augmentation (fraction)
            'hsv_s': (1, 0.0,
                      0.9),  # image HSV-Saturation augmentation (fraction)
            'hsv_v': (1, 0.0, 0.9),  # image HSV-Value augmentation (fraction)
            'degrees': (1, 0.0, 45.0),  # image rotation (+/- deg)
            'translate': (1, 0.0, 0.9),  # image translation (+/- fraction)
            'scale': (1, 0.0, 0.9),  # image scale (+/- gain)
            'shear': (1, 0.0, 10.0),  # image shear (+/- deg)
            'perspective':
            (0, 0.0, 0.001),  # image perspective (+/- fraction), range 0-0.001
            'flipud': (1, 0.0, 1.0),  # image flip up-down (probability)
            'fliplr': (0, 0.0, 1.0),  # image flip left-right (probability)
            'mosaic': (1, 0.0, 1.0),  # image mixup (probability)
            'mixup': (1, 0.0, 1.0)
        }  # image mixup (probability)

        assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
        opt.notest, opt.nosave = True, True  # only test/save final epoch
        # ei = [isinstance(x, (int, float)) for x in hyp.values()]  # evolvable indices
        yaml_file = Path(
            opt.logdir
        ) / 'evolve' / 'hyp_evolved.yaml'  # save best result here
        if opt.bucket:
            os.system('gsutil cp gs://%s/evolve.txt .' %
                      opt.bucket)  # download evolve.txt if exists

        for _ in range(300):  # generations to evolve
            if os.path.exists(
                    'evolve.txt'
            ):  # if evolve.txt exists: select best hyps and mutate
                # Select parent(s)
                parent = 'single'  # parent selection method: 'single' or 'weighted'
                x = np.loadtxt('evolve.txt', ndmin=2)
                n = min(5, len(x))  # number of previous results to consider
                x = x[np.argsort(-fitness(x))][:n]  # top n mutations
                w = fitness(x) - fitness(x).min()  # weights
                if parent == 'single' or len(x) == 1:
                    # x = x[random.randint(0, n - 1)]  # random selection
                    x = x[random.choices(range(n),
                                         weights=w)[0]]  # weighted selection
                elif parent == 'weighted':
                    x = (x * w.reshape(
                        n, 1)).sum(0) / w.sum()  # weighted combination

                # Mutate
                mp, s = 0.8, 0.2  # mutation probability, sigma
                npr = np.random
                npr.seed(int(time.time()))
                g = np.array([x[0] for x in meta.values()])  # gains 0-1
                ng = len(meta)
                v = np.ones(ng)
                while all(
                        v == 1
                ):  # mutate until a change occurs (prevent duplicates)
                    v = (g * (npr.random(ng) < mp) * npr.randn(ng) *
                         npr.random() * s + 1).clip(0.3, 3.0)
                for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)
                    hyp[k] = float(x[i + 7] * v[i])  # mutate

            # Constrain to limits
            for k, v in meta.items():
                hyp[k] = max(hyp[k], v[1])  # lower limit
                hyp[k] = min(hyp[k], v[2])  # upper limit
                hyp[k] = round(hyp[k], 5)  # significant digits

            # Train mutation
            results = train(hyp.copy(), opt, device)

            # Write mutation results
            print_mutation(hyp.copy(), results, yaml_file, opt.bucket)

        # Plot results
        plot_evolution(yaml_file)
        print(
            f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
            f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}'
        )