def extend(line, by=6, size_decay=0.9, confidence_decay=0.825):

        confidences = [1]
        for i in range(by - 1):
            confidences.append(confidences[-1] * confidence_decay)
        confidences.reverse()

        for index in range(by):
            if len(line.steps) >= 2:
                direction = angle_between_points(line.steps[-2].base_point, line.steps[-1].base_point)
            else:
                direction = angle_between_points(line.steps[-1].base_point, line.steps[-1].upper_point) - 90
            upper_height = line.steps[-1].calculate_upper_height()
            lower_height = line.steps[-1].calculate_lower_height()

            next_base_point = get_new_point(line.steps[-1].base_point, direction, upper_height)
            next_upper_point = get_new_point(next_base_point, direction - 90.0, upper_height * size_decay)
            next_lower_point = get_new_point(next_base_point, direction + 90.0, lower_height * size_decay)

            step_data = {
                "base_point": [next_base_point.x, next_base_point.y],
                "lower_point": [next_lower_point.x, next_lower_point.y],
                "upper_point": [next_upper_point.x, next_upper_point.y],
            }

            step = TrainingStep(line, step_data)
            step.stop_confidence = confidences[index]
            line.steps.append(step)
    def intersections(self):

        # For each segment of the baseline, get its intersections
        # and pass the rest to the next segment
        segments_intersections = []
        rest = 0
        relevant_segments = list(
            filter(lambda x: x.segment.intersects(self.line.polygon.get()),
                   self.segments))

        # Trim leading segments
        while len(relevant_segments
                  ) > 0 and relevant_segments[0].get_first_section() is None:
            relevant_segments = relevant_segments[1:]

        for i in range(0, len(relevant_segments)):
            segment = relevant_segments[i]
            try:
                this_segment_intersections, rest = segment.intersections(
                    offset=rest, start_of_line=(i == 0))
                segments_intersections += this_segment_intersections
            except NoStartOfLine as e:
                print("[Segment #" + str(i) +
                      "] [Does not have a start of line]")

        relevant_segments.reverse()

        for i, segment in enumerate(relevant_segments):
            last_section = segment.get_last_section()
            if last_section is not None:
                segments_intersections = list(
                    filter(
                        lambda x: x.segment != segment or x.distance <
                        last_section.distance, segments_intersections))
                # segments_intersections.append(last_section)
                break

        segment_count = len(segments_intersections)

        if segment_count >= 1:
            last_section = segments_intersections[-1]
            reference = last_section
            last_angle = (90.0 +
                          angle_between_points(reference.p1, reference.p2))
            distance_multipler = 2 / 3
            p1 = get_new_point(reference.p1, last_angle,
                               distance_multipler * reference.height())
            p2 = get_new_point(reference.p2, last_angle,
                               distance_multipler * reference.height())
            new_section = VirtualSegmentSection(p1, p2, reference.confidence)
            segments_intersections.append(new_section)
            segments_intersections[-1].confidence = 0.0

        return segments_intersections
def normalize_points(points):
    for i in range(len(points) - 1):
        angle_to_next = angle_between_points(points[i]["base_point"],
                                             points[i + 1]["base_point"])
        points[i]["angle"] = angle_to_next
        height = points[i]["base_point"].distance(points[i]["upper_point"])
        lower_height = points[i]["base_point"].distance(
            points[i]["lower_point"])
        points[i]["upper_point"] = get_new_point(points[i]["base_point"],
                                                 angle_to_next - 90, height)
        points[i]["lower_point"] = get_new_point(points[i]["base_point"],
                                                 angle_to_next + 90,
                                                 lower_height)
    return points
def shift_touching_upper_points(ground_truth):
    # Enforce a height of 2 to the ground truth lower polygon

    for index, step in enumerate(ground_truth):
        upper_as_point = Point(step[0][0].item(), step[0][1].item())
        base_as_point = Point(step[1][0].item(), step[1][1].item())
        lower_as_point = Point(step[2][0].item(), step[2][1].item())
        step_angle = angle_between_points(base_as_point, upper_as_point)
        lower_height = base_as_point.distance(lower_as_point)

        if lower_height < 2:
            lower_as_point = get_new_point(base_as_point, step_angle - 180, 2)

        # if index == 0:
        # If sol, push it backwards
        # angle_to_next = angle_between_points(base_as_point, Point(ground_truth[index + 1][1][0].item(),
        # ground_truth[index + 1][1][1].item()))
        # base_as_point = get_new_point(base_as_point, angle_to_next + 180, 2)
        # lower_as_point = get_new_point(lower_as_point, angle_to_next + 180, 2)

        # ground_truth[index][1][0] = torch.tensor(base_as_point.x).cuda()
        # ground_truth[index][1][1] = torch.tensor(base_as_point.y).cuda()
        ground_truth[index][2][0] = torch.tensor(lower_as_point.x).cuda()
        ground_truth[index][2][1] = torch.tensor(lower_as_point.y).cuda()

    return ground_truth
Esempio n. 5
0
 def starting_window(self, parameters):
     sol_angle = angle_between_points(self.sol[1], self.sol[0]) + 90
     sol_height = self.sol[0].distance(self.sol[1])
     backward_projected = get_new_point(self.sol[1], sol_angle - 180,
                                        sol_height)
     return ViewingWindow(parameters, self.image, backward_projected,
                          sol_height, sol_angle)
Esempio n. 6
0
 def absolute(self, point):
     relative_distance_to_point = Point(0, 0).distance(point)
     relative_angle_to_point = angle_between_points(Point(0, 0), point)
     actual_distance_to_point = relative_distance_to_point * self.ratio
     actual_angle_to_point = relative_angle_to_point + self.angle
     predicted_point = get_new_point(self.origin, actual_angle_to_point,
                                     actual_distance_to_point)
     return predicted_point
Esempio n. 7
0
 def __init__(self, parameters, image, origin, size, angle):
     self.parameters = parameters
     self.source_image = image
     self.origin = origin
     self.focus = get_new_point(origin, angle,
                                self.parameters.patch_ratio * size / 2)
     self.size = size
     self.angle = angle
     self.ratio = self.parameters.patch_ratio * self.size / self.parameters.patch_size
Esempio n. 8
0
    def section(self):
        interpolated_baseline = []

        ending_angle = self.steps[0].angle - 90

        for step_index, step in enumerate(self.steps[:-1]):
            next_step = self.steps[step_index + 1]

            this_angle = (step.angle - 90)
            next_angle = (next_step.angle - 90)

            starting_angle = ending_angle
            middle_angle = this_angle
            ending_angle = self.angleLerp(this_angle, next_angle, 0.5)

            # Add first point itself
            # interpolated_baseline.append(step.base_point)

            angle = angle_between_points(step.base_point, next_step.base_point)
            distance = step.base_point.distance(next_step.base_point)
            walked = 0
            step_size = 1
            while walked < distance:
                percent_walked = walked / distance

                if percent_walked < 0.5:
                    intersection_angle = self.angleLerp(
                        starting_angle, middle_angle, percent_walked * 2)
                else:
                    assert 0 <= (percent_walked - 0.5) * 2 <= 1
                    intersection_angle = self.angleLerp(
                        middle_angle, ending_angle, (percent_walked - 0.5) * 2)

                baseline_point = get_new_point(step.base_point, angle, walked)
                upper_point = get_new_point(baseline_point, intersection_angle,
                                            80)
                lower_point = get_new_point(baseline_point,
                                            intersection_angle - 180, 20)

                interpolated_baseline.append(
                    [upper_point, baseline_point, lower_point])
                walked += step_size

        return interpolated_baseline
 def __init__(self, segment, distance=0):
     self.distance = distance
     self.segment = segment
     self.confidence = 1.0
     interpolation_distance = min(self.distance, self.segment.length)
     self.point = self.segment.interpolate(interpolation_distance)
     scan_p1 = get_new_point(self.point, self.segment.bearing + 90,
                             self.MAXIMUM_SCAN_HEIGHT)
     scan_p2 = get_new_point(self.point, self.segment.bearing - 90,
                             self.MAXIMUM_SCAN_HEIGHT)
     scan_line = LineString([scan_p1, scan_p2])
     try:
         self.intersection_line = scan_line.intersection(
             self.segment.baseline.line.polygon.get())
         self.p1 = Point(self.intersection_line.coords[0][0],
                         self.intersection_line.coords[0][1])
         self.p2 = Point(self.intersection_line.coords[1][0],
                         self.intersection_line.coords[1][1])
     except Exception as e:
         self.intersection_line = None
    def extend_backwards(line):

        if len(line.steps) < 2:
            return

        direction = angle_between_points(line.steps[0].base_point, line.steps[1].base_point)

        upper_height = line.steps[0].calculate_upper_height()
        lower_height = line.steps[0].calculate_lower_height()

        next_base_point = get_new_point(line.steps[0].base_point, direction - 180, upper_height)
        next_upper_point = get_new_point(next_base_point, direction - 90.0, upper_height)
        next_lower_point = get_new_point(next_base_point, direction + 90.0, lower_height)

        step_data = {
            "base_point": [next_base_point.x, next_base_point.y],
            "lower_point": [next_lower_point.x, next_lower_point.y],
            "upper_point": [next_upper_point.x, next_upper_point.y],
        }

        step = TrainingStep(line, step_data)
        step.stop_confidence = 0.0
        line.steps = [step] + line.steps
Esempio n. 11
0
 def draw_viewing_window(self,
                         step,
                         ratio,
                         line_color=(1, 0, 1, 1),
                         fill_color=(1, 0, 1, 0.15),
                         line_width=3):
     focus = get_new_point(step.base_point, step.angle,
                           ratio * step.calculate_upper_height() / 2)
     points = viewing_window_points(focus,
                                    step.calculate_upper_height(),
                                    step.angle,
                                    ratio=ratio)
     self.draw_area(points,
                    fill_color=fill_color,
                    line_color=line_color,
                    line_width=line_width)
Esempio n. 12
0
    def upper_concat(self, img):

        upper_image = None

        steps = self.valid_steps(img)
        box_height = max([step.calculate_upper_height() for step in steps])

        for step in steps:
            if step.calculate_upper_height() < 16:
                step.upper_point = get_new_point(step.base_point,
                                                 step.angle - 90, 16)

        for step_index, step in enumerate(steps[:-1]):
            next_step = steps[step_index + 1]
            angle = angle_between_points(step.base_point, next_step.base_point)

            width = step.base_point.distance(next_step.base_point)

            left_upper_height = step.calculate_upper_height()
            right_upper_height = next_step.calculate_upper_height()

            # Trapezoids
            upper_src = np.array(
                [[step.upper_point.x, step.upper_point.y],
                 [next_step.upper_point.x, next_step.upper_point.y],
                 [next_step.base_point.x, next_step.base_point.y],
                 [step.base_point.x, step.base_point.y]])
            # Destination rectangles
            upper_dst = np.array([[0, box_height - left_upper_height],
                                  [width, box_height - right_upper_height],
                                  [width, box_height], [0.0, box_height]])

            # White background
            upper_background = np.ones((int(box_height), int(width), 3),
                                       np.uint8)

            upper_perspective, _ = cv2.findHomography(upper_src, upper_dst)
            upper_out = cv2.warpPerspective(
                img, upper_perspective,
                (upper_background.shape[1], upper_background.shape[0]))
            upper_image = upper_out if upper_image is None else hconcat_resize_min(
                [upper_image, upper_out])

            # cv2.waitKey(0)
            # cv2.destroyAllWindows()

        return upper_image
    def enforce_minimum_height(line, minimum_height=16):

        ignored = []

        for step_index in range(len(line.steps) - 1):

            if line.steps[step_index] in ignored:
                continue

            if step_index < len(line.steps) - 1:
                next_step = line.steps[step_index + 1]
                distance = line.steps[step_index].base_point.distance(next_step.base_point)
                if distance < minimum_height / 2:
                    ignored.append(next_step)

            if line.steps[step_index].calculate_upper_height() < minimum_height:
                new_upper_point = get_new_point(line.steps[step_index].base_point,
                                                line.steps[step_index].angle - 90,
                                                minimum_height)
                line.steps[step_index].upper_point = new_upper_point

        line.steps = [l for l in line.steps if l not in ignored]
Esempio n. 14
0
 def relative(self, point):
     actual_distance = self.origin.distance(point)
     actual_angle = angle_between_points(self.origin, point)
     scaled_down_distance = actual_distance * (1 / self.ratio)
     rotated_angle = actual_angle - self.angle
     return get_new_point(Point(0, 0), rotated_angle, scaled_down_distance)
Esempio n. 15
0
def to_steps(data, pairs, visualize=True):
    result = {
        "images": []
    }

    for i, page_index in enumerate(data):
        pair = pairs[i]

        print("Stepping pair #" + str(pair.index))

        image_data = {
            "index": pair.index,
            "filename": pair.img,
            "lines": []
        }

        image = cairo.ImageSurface.create_from_png(pair.img)
        context = cairo.Context(image)

        if visualize:
            for component in pair.get_components():
                context.rectangle(component["x"], component["y"], component["width"], component["height"], )
                context.set_source_rgba(0, 0, 1, 0.1)
                context.fill()

        for line_index in data[page_index]:

            line = data[page_index][line_index]
            baseline = line["baseline"]
            hull = line["hull"]
            line_data = {
                "text": line["text"],
                "steps": []
            }

            line_slope = slope(baseline)
            start_point = baseline[0]
            distance_walked = 0
            total_distance = distance(baseline[0], baseline[1])

            height_threshold = 20
            context.set_operator(cairo.OPERATOR_MULTIPLY)
            context.set_line_width(5)
            upper_points = []
            lower_points = []
            baseline_points = []

            while distance_walked < total_distance:
                intersecting_line = perpendicular(start_point, baseline)
                intersection = intersecting_line.intersection(hull)

                upper_point = None
                lower_point = None

                if isinstance(intersection, MultiPoint) and len(intersection.bounds) == 4:
                    upper_point = [intersection.bounds[0], intersection.bounds[1]]
                    lower_point = [intersection.bounds[2], intersection.bounds[3]]
                elif isinstance(intersection, LineString) and len(intersection.bounds) == 4:
                    upper_point = [intersection.bounds[0], intersection.bounds[1]]
                    lower_point = [intersection.bounds[2], intersection.bounds[3]]
                elif isinstance(intersection, Point):
                    print("Intersection was point, moving forward")
                    start_point = walk(start_point, line_slope, 4)
                    continue
                else:
                    if distance_walked == 0:
                        start_point = walk(start_point, line_slope, 4)
                    else:
                        print("No intersection, skipping line " + str(line_index) + " of " + str(
                            pair.index) + " after walking" + str(distance_walked))
                        distance_walked = total_distance
                    continue

                if upper_point is not None and lower_point is not None:

                    upper_points.append(upper_point)
                    lower_points.append(lower_point)

                    baseline_intersection = LineString(
                        [Point(upper_point[0], upper_point[1]), Point(lower_point[0], lower_point[1])]) \
                        .intersection(LineString(to_points(baseline)))

                    baseline_point = None
                    if isinstance(baseline_intersection, Point) and len(baseline_intersection.bounds) > 1:
                        baseline_point = [baseline_intersection.bounds[0], baseline_intersection.bounds[1]]
                    else:
                        baseline_point = lower_point
                    baseline_points.append(baseline_point)

                    height = distance(upper_point, baseline_point)

                    if height < height_threshold and distance_walked == 0:
                        # The first point doesnt have a height
                        if distance_walked == 0:
                            angle = angle_between_points(to_points(baseline)[0], to_points(baseline)[1])
                            new_upper_point = get_new_point(to_points(baseline)[0], angle - 90, height_threshold)
                            upper_point = [new_upper_point.x, new_upper_point.y]

                    if height < height_threshold:
                        height = height_threshold

                    context.set_source_rgba(1, 0, 1, 1)
                    context.move_to(upper_point[0], upper_point[1])
                    context.line_to(lower_point[0], lower_point[1])
                    context.stroke()

                    context.set_source_rgba(0, 0, 1, 0.1)
                    context.move_to(start_point[0], start_point[1])
                    start_point = walk(start_point, line_slope, height)
                    distance_walked += height
                    context.line_to(start_point[0], start_point[1])
                    context.stroke()

                else:
                    distance_walked = total_distance

            for pc in [baseline_points, upper_points, lower_points]:
                if len(pc) == 0:
                    continue
                context.set_source_rgba(1, 0, 1, 0.3)
                context.move_to(pc[0][0], pc[0][1])
                for bp in pc:
                    context.line_to(bp[0], bp[1])
                context.stroke()

            for i in range(len(baseline_points)):
                line_data["steps"].append({
                    "upper_point": upper_points[i],
                    "lower_point": lower_points[i],
                    "base_point": baseline_points[i],
                })

            line_data["index"] = line_index
            image_data["lines"].append(line_data)

        result["images"].append(image_data)
        save_path = os.path.join(pair.base, "json", str(image_data["index"]) + ".json")
        save_to_json(image_data, save_path)
        if visualize:
            visualization_path = os.path.join(pair.base, "stepped", str(pair.index) + ".png")
            create_folders(visualization_path)
            image.write_to_png(visualization_path)

    return result