def decode(roi_locs, roi_scores, indices_and_rois, test_rois_num, configer, metas): indices_and_rois = indices_and_rois num_classes = configer.get('data', 'num_classes') mean = torch.Tensor(configer.get('roi', 'loc_normalize_mean')).repeat(num_classes)[None] std = torch.Tensor(configer.get('roi', 'loc_normalize_std')).repeat(num_classes)[None] mean = mean.to(roi_locs.device) std = std.to(roi_locs.device) roi_locs = (roi_locs * std + mean) roi_locs = roi_locs.contiguous().view(-1, num_classes, 4) rois = indices_and_rois[:, 1:] rois = rois.contiguous().view(-1, 1, 4).expand_as(roi_locs) wh = torch.exp(roi_locs[:, :, 2:]) * (rois[:, :, 2:] - rois[:, :, :2]) cxcy = roi_locs[:, :, :2] * (rois[:, :, 2:] - rois[:, :, :2]) + (rois[:, :, :2] + rois[:, :, 2:]) / 2 dst_bbox = torch.cat([cxcy - wh / 2, cxcy + wh / 2], 2) # [b, 8732,4] if configer.get('phase') != 'debug': cls_prob = F.softmax(roi_scores, dim=1) else: cls_prob = roi_scores cls_label = torch.LongTensor([i for i in range(num_classes)])\ .contiguous().view(1, num_classes).repeat(indices_and_rois.size(0), 1).to(roi_locs.device) output = [None for _ in range(test_rois_num.size(0))] start_index = 0 for i in range(test_rois_num.size(0)): tmp_dst_bbox = dst_bbox[start_index:start_index+test_rois_num[i]] tmp_dst_bbox[:, :, 0::2] = tmp_dst_bbox[:, :, 0::2].clamp(min=0, max=metas[i]['border_size'][0] - 1) tmp_dst_bbox[:, :, 1::2] = tmp_dst_bbox[:, :, 1::2].clamp(min=0, max=metas[i]['border_size'][1] - 1) tmp_dst_bbox *= (metas[i]['ori_img_size'][0] / metas[i]['border_size'][0]) tmp_cls_prob = cls_prob[start_index:start_index+test_rois_num[i]] tmp_cls_label = cls_label[start_index:start_index+test_rois_num[i]] start_index += test_rois_num[i] mask = (tmp_cls_prob > configer.get('res', 'val_conf_thre')) & (tmp_cls_label > 0) tmp_dst_bbox = tmp_dst_bbox[mask].contiguous().view(-1, 4) if tmp_dst_bbox.numel() == 0: continue tmp_cls_prob = tmp_cls_prob[mask].contiguous().view(-1,).unsqueeze(1) tmp_cls_label = tmp_cls_label[mask].contiguous().view(-1,).unsqueeze(1) valid_preds = torch.cat((tmp_dst_bbox, tmp_cls_prob.float(), tmp_cls_label.float()), 1) valid_ind = DetHelper.cls_nms(valid_preds[:, :5], labels=valid_preds[:, 5], max_threshold=configer.get('res', 'nms')['max_threshold'], return_ind=True) valid_preds = valid_preds[valid_ind] output[i] = valid_preds return output
def decode(bbox, conf, default_boxes, configer, input_size): loc = bbox if configer.get('phase') != 'debug': conf = F.softmax(conf, dim=-1) default_boxes = default_boxes.unsqueeze(0).repeat(loc.size(0), 1, 1).to(bbox.device) variances = [0.1, 0.2] wh = torch.exp(loc[:, :, 2:] * variances[1]) * default_boxes[:, :, 2:] cxcy = loc[:, :, :2] * variances[0] * default_boxes[:, :, 2:] + default_boxes[:, :, :2] boxes = torch.cat([cxcy - wh / 2, cxcy + wh / 2], 2) # [b, 8732,4] batch_size, num_priors, _ = boxes.size() boxes = boxes.unsqueeze(2).repeat(1, 1, configer.get('data', 'num_classes'), 1) boxes = boxes.contiguous().view(boxes.size(0), -1, 4) # clip bounding box boxes[:, :, 0::2] = boxes[:, :, 0::2].clamp(min=0, max=input_size[0] - 1) boxes[:, :, 1::2] = boxes[:, :, 1::2].clamp(min=0, max=input_size[1] - 1) labels = torch.Tensor([i for i in range(configer.get('data', 'num_classes'))]).to(boxes.device) labels = labels.view(1, 1, -1, 1).repeat(batch_size, num_priors, 1, 1).contiguous().view(batch_size, -1, 1) max_conf = conf.contiguous().view(batch_size, -1, 1) # max_conf, labels = conf.max(2, keepdim=True) # [b, 8732,1] predictions = torch.cat((boxes, max_conf.float(), labels.float()), 2) output = [None for _ in range(len(predictions))] for image_i, image_pred in enumerate(predictions): ids = labels[image_i].squeeze(1).nonzero().contiguous().view(-1,) if ids.numel() == 0: continue valid_preds = image_pred[ids] _, order = valid_preds[:, 4].sort(0, descending=True) order = order[:configer.get('res', 'nms')['pre_nms']] valid_preds = valid_preds[order] valid_preds = valid_preds[valid_preds[:, 4] > configer.get('res', 'val_conf_thre')] if valid_preds.numel() == 0: continue valid_preds = DetHelper.cls_nms(valid_preds[:, :6], labels=valid_preds[:, 5], max_threshold=configer.get('res', 'nms')['max_threshold'], cls_keep_num=configer.get('res', 'cls_keep_num')) _, order = valid_preds[:, 4].sort(0, descending=True) order = order[:configer.get('res', 'max_per_image')] output[image_i] = valid_preds[order] return output
def decode(batch_pred_bboxes, configer): box_corner = batch_pred_bboxes.new(batch_pred_bboxes.shape) box_corner[:, :, 0] = batch_pred_bboxes[:, :, 0] - batch_pred_bboxes[:, :, 2] / 2 box_corner[:, :, 1] = batch_pred_bboxes[:, :, 1] - batch_pred_bboxes[:, :, 3] / 2 box_corner[:, :, 2] = batch_pred_bboxes[:, :, 0] + batch_pred_bboxes[:, :, 2] / 2 box_corner[:, :, 3] = batch_pred_bboxes[:, :, 1] + batch_pred_bboxes[:, :, 3] / 2 # clip bounding box box_corner[:, :, 0::2] = box_corner[:, :, 0::2].clamp(min=0, max=1.0) box_corner[:, :, 1::2] = box_corner[:, :, 1::2].clamp(min=0, max=1.0) batch_pred_bboxes[:, :, :4] = box_corner[:, :, :4] output = [None for _ in range(len(batch_pred_bboxes))] for image_i, image_pred in enumerate(batch_pred_bboxes): # Filter out confidence scores below threshold conf_mask = (image_pred[:, 4] > configer.get( 'vis', 'obj_threshold')).squeeze() image_pred = image_pred[conf_mask] # If none are remaining => process next image if image_pred.numel() == 0: continue # Get score and class with highest confidence class_conf, class_pred = torch.max( image_pred[:, 5:5 + configer.get('data', 'num_classes')], 1, keepdim=True) # Detections ordered as (x1, y1, x2, y2, obj_conf, class_conf, class_pred) detections = torch.cat( (image_pred[:, :5], class_conf.float(), class_pred.float()), 1) keep_index = DetHelper.cls_nms( image_pred[:, :4], scores=image_pred[:, 4], labels=class_pred.squeeze(1), nms_threshold=configer.get('nms', 'max_threshold'), iou_mode=configer.get('nms', 'mode'), nms_mode='cython_nms') output[image_i] = detections[keep_index] return output
def decode(loc, conf, configer, meta): batch_size, num_priors, _ = loc.size() loc = loc.unsqueeze(2).repeat(1, 1, configer.get('data', 'num_classes'), 1) loc = loc.contiguous().view(loc.size(0), -1, 4) labels = torch.Tensor([ i for i in range(configer.get('data', 'num_classes')) ]).to(loc.device) labels = labels.view(1, 1, -1, 1).repeat(batch_size, num_priors, 1, 1).contiguous().view(batch_size, -1, 1) conf = conf.contiguous().view(batch_size, -1, 1) # max_conf, labels = conf.max(2, keepdim=True) # [b, 8732,1] predictions = torch.cat((loc.float(), conf.float(), labels.float()), 2) output = [None for _ in range(len(predictions))] for i, image_pred in enumerate(predictions): image_pred[:, 0] *= meta[i]['ori_img_size'][0] image_pred[:, 1] *= meta[i]['ori_img_size'][1] image_pred[:, 2] *= meta[i]['ori_img_size'][0] image_pred[:, 3] *= meta[i]['ori_img_size'][1] ids = labels[i].squeeze(1).nonzero().contiguous().view(-1, ) if ids.numel() == 0: continue valid_preds = image_pred[ids] _, order = valid_preds[:, 4].sort(0, descending=True) order = order[:configer.get('res', 'nms')['pre_nms']] valid_preds = valid_preds[order] valid_preds = valid_preds[ valid_preds[:, 4] > configer.get('res', 'val_conf_thre')] if valid_preds.numel() == 0: continue valid_ind = DetHelper.cls_nms( valid_preds[:, :5], labels=valid_preds[:, 5], max_threshold=configer.get('res', 'nms')['max_threshold'], cls_keep_num=configer.get('res', 'cls_keep_num'), return_ind=True) valid_preds = valid_preds[valid_ind] _, order = valid_preds[:, 4].sort(0, descending=True) order = order[:configer.get('res', 'max_per_image')] output[i] = valid_preds[order] return output
def decode(batch_detections, configer, meta): output = [None for _ in range(len(meta))] for i in range(len(meta)): image_pred = batch_detections[i] image_pred[:, 0] *= meta[i]['ori_img_size'][0] image_pred[:, 1] *= meta[i]['ori_img_size'][1] image_pred[:, 2] *= meta[i]['ori_img_size'][0] image_pred[:, 3] *= meta[i]['ori_img_size'][1] # Filter out confidence scores below threshold image_pred = image_pred[image_pred[:, 4] > configer.get('res', 'val_conf_thre')] # If none are remaining => process next image if image_pred.numel() == 0: continue # Get score and class with highest confidence class_conf, class_pred = torch.max(image_pred[:, 5:5 + configer.get('data', 'num_classes')], 1, keepdim=True) # Detections ordered as (x1, y1, x2, y2, obj_conf, class_conf, class_pred) detections = torch.cat((image_pred[:, :5], class_conf.float(), class_pred.float()), 1) valid_ind = DetHelper.cls_nms(detections[:, :5], labels=class_pred.squeeze(1), max_threshold=configer.get('res', 'nms')['max_threshold'], return_ind=True) output[i] = detections[valid_ind] return output
def decode(roi_locs, roi_scores, indices_and_rois, test_rois_num, configer, input_size): roi_locs = roi_locs.cpu() roi_scores = roi_scores.cpu() indices_and_rois = indices_and_rois.cpu() num_classes = configer.get('data', 'num_classes') mean = torch.Tensor(configer.get( 'roi', 'loc_normalize_mean')).repeat(num_classes)[None] std = torch.Tensor(configer.get( 'roi', 'loc_normalize_std')).repeat(num_classes)[None] mean = mean.to(roi_locs.device) std = std.to(roi_locs.device) roi_locs = (roi_locs * std + mean) roi_locs = roi_locs.contiguous().view(-1, num_classes, 4) # roi_locs = roi_locs[:,:, [1, 0, 3, 2]] rois = indices_and_rois[:, 1:] rois = rois.contiguous().view(-1, 1, 4).expand_as(roi_locs) wh = torch.exp(roi_locs[:, :, 2:]) * (rois[:, :, 2:] - rois[:, :, :2]) cxcy = roi_locs[:, :, :2] * (rois[:, :, 2:] - rois[:, :, :2]) + ( rois[:, :, :2] + rois[:, :, 2:]) / 2 dst_bbox = torch.cat([cxcy - wh / 2, cxcy + wh / 2], 2) # [b, 8732,4] # clip bounding box dst_bbox[:, :, 0::2] = (dst_bbox[:, :, 0::2]).clamp(min=0, max=input_size[0] - 1) dst_bbox[:, :, 1::2] = (dst_bbox[:, :, 1::2]).clamp(min=0, max=input_size[1] - 1) if configer.get('phase') != 'debug': cls_prob = F.softmax(roi_scores, dim=1) else: cls_prob = roi_scores cls_label = torch.LongTensor([i for i in range(num_classes)])\ .contiguous().view(1, num_classes).repeat(indices_and_rois.size(0), 1) output = [None for _ in range(test_rois_num.size(0))] start_index = 0 for i in range(test_rois_num.size(0)): # batch_index = (indices_and_rois[:, 0] == i).nonzero().contiguous().view(-1,) # tmp_dst_bbox = dst_bbox[batch_index] # tmp_cls_prob = cls_prob[batch_index] # tmp_cls_label = cls_label[batch_index] tmp_dst_bbox = dst_bbox[start_index:start_index + test_rois_num[i]] tmp_cls_prob = cls_prob[start_index:start_index + test_rois_num[i]] tmp_cls_label = cls_label[start_index:start_index + test_rois_num[i]] start_index += test_rois_num[i] mask = (tmp_cls_prob > configer.get( 'vis', 'conf_threshold')) & (tmp_cls_label > 0) tmp_dst_bbox = tmp_dst_bbox[mask].contiguous().view(-1, 4) if tmp_dst_bbox.numel() == 0: continue tmp_cls_prob = tmp_cls_prob[mask].contiguous().view( -1, ).unsqueeze(1) tmp_cls_label = tmp_cls_label[mask].contiguous().view( -1, ).unsqueeze(1) valid_preds = torch.cat( (tmp_dst_bbox, tmp_cls_prob.float(), tmp_cls_label.float()), 1) keep = DetHelper.cls_nms(valid_preds[:, :4], scores=valid_preds[:, 4], labels=valid_preds[:, 5], nms_threshold=configer.get( 'nms', 'overlap_threshold'), iou_mode=configer.get('nms', 'mode')) output[i] = valid_preds[keep] return output