Esempio n. 1
0
def main(results_dir='results/kinematics/test',
         learning_rate=1e-3,
         n_epochs=5001,
         timesteps=5):
    # Hyperparameters
    summary_step = 1000

    class Propagator:
        def __init__(self):
            self.input = None
            self.output = None

        def __call__(self, input):
            self.input = input
            h = tf.keras.layers.Dense(units=50, activation=tf.nn.relu)(input)
            h = tf.keras.layers.Dense(units=50, activation=tf.nn.relu)(h)
            h = tf.keras.layers.Dense(units=1)(h)
            self.output = h
            return self.output

    # Import parabola data
    data = np.load('dataset/kinematic.npz')
    x_d = np.asarray(data["x_d"])
    x_v = np.asarray(data["x_v"])
    y_d = np.asarray(data["y_d"])
    y_v = np.asarray(data["y_v"])
    a_data = np.asarray(data["g"])

    # Prepare data
    # The first few time steps are reserved for the symbolic regression propagator
    x = np.stack((x_d, x_v), axis=2)  # Data fed into the encoder
    y0 = np.stack((y_d[:, 0], y_v[:, 0]),
                  axis=1)  # Input into the symbolic propagator
    y_data = np.stack((y_d[:, 1:timesteps + 1], y_v[:, 1:timesteps + 1]),
                      axis=2)  # shape(NG, LENGTH, 2)

    # Encoder
    enc = helpers.Encoder()  # layer should end with 1, which is the output
    x_input = tf.placeholder(shape=(None, x.shape[1], x.shape[2]),
                             dtype=tf.float32,
                             name="enc_input")
    training = tf.placeholder_with_default(False, [])
    z = enc(x_input, training=training)

    prop_d = Propagator()
    prop_v = Propagator()
    prop_input = tf.placeholder(shape=(None, 2),
                                dtype=tf.float32,
                                name="prop_input")  # input is d, v

    rec_input = [prop_input]
    for i in range(timesteps):
        full_input = tf.concat([rec_input[i], z], axis=1,
                               name="full_input")  # d, v, z
        rec_input.append(
            tf.concat(
                [prop_d(full_input), prop_v(full_input)],
                axis=1,
                name="c_prop_input"))
    y_hat = tf.stack(rec_input[1:], axis=1)  # Ignore initial conditions

    # Label and errors
    y = tf.placeholder(shape=(None, timesteps, 2),
                       dtype=tf.float32,
                       name="label_input")
    loss = tf.losses.mean_squared_error(labels=y, predictions=y_hat)

    # Training
    learning_rate_ph = tf.placeholder(tf.float32)
    opt = tf.train.RMSPropOptimizer(learning_rate=learning_rate_ph)
    train = opt.minimize(loss)

    # Training session
    loss_list = []
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())

        for i in range(n_epochs):
            feed_dict = {
                x_input: x,
                prop_input: y0,
                y: y_data,
                learning_rate_ph: learning_rate,
                training: True
            }
            _ = sess.run(train, feed_dict=feed_dict)
            if i % summary_step == 0:
                loss_i = sess.run(loss, feed_dict=feed_dict)
                loss_list.append(loss_i)
                print(loss_i)

        # Save results
        results = {
            "timesteps": timesteps,
            "summary_step": summary_step,
            "learning_rate": learning_rate,
            "n_epochs": n_epochs,
            "loss_list": loss_list,
        }

        trial_dir = helpers.get_trial_path(results_dir)

        tf.saved_model.simple_save(sess,
                                   trial_dir,
                                   inputs={
                                       "x": x_input,
                                       "y0": prop_input,
                                       "training": training,
                                       "z": z
                                   },
                                   outputs={
                                       "z": z,
                                       "y": y_hat
                                   })

        with open(os.path.join(trial_dir, 'summary.pickle'), "wb+") as f:
            pickle.dump(results, f)
Esempio n. 2
0
def main(results_dir='results/sho/test', trials=1, learning_rate=1e-2, reg_weight=2e-4, timesteps=25, batch_size=129,
         n_epochs1=2001, n_epochs2=5001, n_epochs3=5001):
    # Hyperparameters
    summary_step = 500
    timesteps0 = 1

    primitive_funcs = [
        *[functions.Constant()] * 2,
        *[functions.Identity()] * 4,
        *[functions.Square()] * 4,
        *[functions.Sin()] * 2,
        *[functions.Exp()] * 2,
        *[functions.Sigmoid()] * 2,
        *[functions.Product(norm=0.1)] * 2,
    ]

    # Import parabola data
    data = np.load('dataset/sho.npz')
    x_d = np.asarray(data["x_d"])
    x_v = np.asarray(data["x_v"])
    y_d = np.asarray(data["y_d"])
    y_v = np.asarray(data["y_v"])
    omega2_data = data["omega2"]
    N = data["N"]

    # Prepare data
    x = np.stack((x_d, x_v), axis=2)    # Shape (N, NT, 2)
    y0 = np.stack((y_d[:, 0], y_v[:, 0]), axis=1)   # Initial conditions for prediction y, fed into propagator
    y_data = np.stack((y_d[:, 1:timesteps + 1], y_v[:, 1:timesteps + 1]), axis=2)     # shape(NG, LENGTH, 2)

    # Tensorflow placeholders for x, y0, y
    x_input = tf.placeholder(shape=(None, x.shape[1], x.shape[2]), dtype=tf.float32, name="enc_input")
    y0_input = tf.placeholder(shape=(None, 2), dtype=tf.float32, name="prop_input")  # input is d, v
    y_input = tf.placeholder(shape=(None, timesteps, 2), dtype=tf.float32, name="label_input")
    length_input = tf.placeholder(dtype=tf.int32, shape=())

    # Dynamics encoder
    encoder = helpers.Encoder()
    training = tf.placeholder_with_default(False, [])
    z = encoder(x_input, training=training)
    z_data = omega2_data[:, np.newaxis]

    # Propagating decoders
    prop_d = SymbolicNet(2, funcs=primitive_funcs)
    prop_v = SymbolicNet(2, funcs=primitive_funcs)
    prop_d.build(4)
    prop_v.build(4)
    # Building recurrent structure
    rnn = tf.keras.layers.RNN(SymbolicCell(prop_d, prop_v), return_sequences=True)
    y0_rnn = tf.concat([tf.expand_dims(y0_input, axis=1), tf.zeros((tf.shape(y0_input)[0], length_input - 1, 2))],
                       axis=1)
    prop_input = tf.concat([y0_rnn, tf.keras.backend.repeat(z, length_input),
                            tf.ones((tf.shape(y0_input)[0], length_input, 1))], axis=2)
    prop_output = rnn(prop_input)

    epoch = tf.placeholder(tf.float32)
    reg_freq = np.pi / (n_epochs1 + n_epochs2) / 1.1
    reg_loss = tf.sin(reg_freq * epoch) ** 2 * regularization.l12_smooth(prop_d.get_weights()) + \
               tf.sin(reg_freq * epoch) ** 2 * regularization.l12_smooth(prop_v.get_weights())
    # reg_loss = regularization.l12_smooth(prop_d.get_weights()) + regularization.l12_smooth(prop_v.get_weights())

    # Training
    learning_rate_ph = tf.placeholder(tf.float32)
    opt = tf.train.RMSPropOptimizer(learning_rate=learning_rate_ph)
    reg_weight_ph = tf.placeholder(tf.float32)
    error = tf.losses.mean_squared_error(labels=y_input[:, :length_input, :], predictions=prop_output)
    loss = error + reg_weight_ph * reg_loss
    train = tf.group([opt.minimize(loss), encoder.bn.updates])

    batch = helpers.batch_generator([x, y_data, y0, z_data], N=N, batch_size=batch_size)

    # Training session
    with tf.Session() as sess:
        for _ in range(trials):
            loss_i = np.nan

            while np.isnan(loss_i):
                loss_list = []
                error_list = []
                reg_list = []

                sess.run(tf.global_variables_initializer())

                for i in range(n_epochs1 + n_epochs2):
                    if i < n_epochs1:
                        reg_weight_i = reg_weight / 5
                        learning_rate_i = learning_rate
                        length_i = min(i // 500 * 2 + timesteps0, timesteps)
                    else:
                        reg_weight_i = reg_weight
                        learning_rate_i = learning_rate / 5
                        length_i = timesteps

                    x_batch, y_batch, y0_batch, z_batch = next(batch)
                    feed_dict = {x_input: x_batch, y0_input: y0_batch, y_input: y_batch,
                                 epoch: i, learning_rate_ph: learning_rate_i, training: True,
                                 reg_weight_ph: reg_weight_i, length_input: length_i}
                    _ = sess.run(train, feed_dict=feed_dict)

                    if i % summary_step == 0 or i == n_epochs1 - 1:
                        feed_dict[training] = False
                        loss_i, error_i, reg_i = sess.run((loss, error, reg_loss), feed_dict=feed_dict)
                        z_arr = sess.run(z, feed_dict=feed_dict)
                        r = np.corrcoef(z_batch[:, 0], z_arr[:, 0])[1, 0]
                        loss_list.append(loss_i)
                        error_list.append(error_i)
                        reg_list.append(reg_i)
                        print("Epoch %d\tTotal loss: %f\tError: %f\tReg loss: %f\tCorrelation: %f"
                              % (i, loss_i, error_i, reg_i, r))
                        if np.isnan(loss_i):
                            break

            # Setting small weights to 0 and freezing them
            prop_d_masked = MaskedSymbolicNet(sess, prop_d, threshold=0.01)
            prop_v_masked = MaskedSymbolicNet(sess, prop_v, threshold=0.01)
            # Keep track of currently existing variables. When we rebuild the rnn, it makes new variables that we need
            # to initialize. Later, we will use this to figure out what the uninitialized variables are.
            temp = set(tf.global_variables())
            # Rebuilding the decoding propagator. Remove regularization
            rnn = tf.keras.layers.RNN(SymbolicCell(prop_d_masked, prop_v_masked), return_sequences=True)
            prop_output = rnn(prop_input)
            loss = tf.losses.mean_squared_error(labels=y_input[:, :length_input, :], predictions=prop_output)
            train = tf.group([opt.minimize(loss), encoder.bn.updates])

            weights_d = sess.run(prop_d_masked.get_weights())
            expr_d = pretty_print.network(weights_d, primitive_funcs, ["d", "v", "z", 1])
            print(expr_d)
            weights_v = sess.run(prop_v_masked.get_weights())
            expr_v = pretty_print.network(weights_v, primitive_funcs, ["d", "v", "z", 1])
            print(expr_v)

            print("Frozen weights. Next stage of training.")

            # Initialize only the uninitialized variables.
            sess.run(tf.variables_initializer(set(tf.global_variables()) - temp))

            for i in range(n_epochs3):
                x_batch, y_batch, y0_batch, z_batch = next(batch)
                feed_dict = {x_input: x_batch, y0_input: y0_batch, y_input: y_batch,
                             epoch: 0, learning_rate_ph: learning_rate / 10, training: True, reg_weight_ph: 0,
                             length_input: length_i}
                _ = sess.run(train, feed_dict=feed_dict)
                if i % summary_step == 0:
                    feed_dict[training] = False
                    loss_i, error_i, reg_i = sess.run((loss, error, reg_loss), feed_dict=feed_dict)
                    z_arr = sess.run(z, feed_dict=feed_dict)
                    r = np.corrcoef(z_batch[:, 0], z_arr[:, 0])[1, 0]
                    loss_list.append(loss_i)
                    error_list.append(error_i)
                    reg_list.append(reg_i)
                    print("Epoch %d\tError: %g\tCorrelation: %f" % (i, error_i, r))

            weights_d = sess.run(prop_d_masked.get_weights())
            expr_d = pretty_print.network(weights_d, primitive_funcs, ["d", "v", "z", 1])
            print(expr_d)
            weights_v = sess.run(prop_v_masked.get_weights())
            expr_v = pretty_print.network(weights_v, primitive_funcs, ["d", "v", "z", 1])
            print(expr_v)

            # Save results
            results = {
                "summary_step": summary_step,
                "learning_rate": learning_rate,
                "n_epochs1": n_epochs1,
                "n_epochs2": n_epochs2,
                "reg_weight": reg_weight,
                "timesteps": timesteps,
                "timesteps0": timesteps0,
                "weights_d": weights_d,
                "weights_v": weights_v,
                "loss_plot": loss_list,
                "error_plot": error_list,
                "reg_plot": reg_list,
                "expr_d": expr_d,
                "expr_v": expr_v
            }

            trial_dir = helpers.get_trial_path(results_dir)  # Get directory in which to save trial results

            tf.saved_model.simple_save(sess, trial_dir,
                                       inputs={"x": x_input, "y0": y0_input, "training": training},
                                       outputs={"z": z, "y": prop_output})

            # Save a summary of the parameters and results
            with open(os.path.join(trial_dir, 'summary.pickle'), "wb+") as f:
                pickle.dump(results, f)

            with open(os.path.join(results_dir, 'eq_summary.txt'), 'a') as f:
                f.write(str(expr_d) + "\n")
                f.write(str(expr_v) + "\n")
                f.write("Error: %f\n\n" % error_list[-1])
Esempio n. 3
0
def main(results_dir='results/sho/test',
         trials=1,
         learning_rate=1e-4,
         timesteps=25,
         batch_size=128,
         n_epochs=20000):
    # Hyperparameters
    summary_step = 2000

    # Import parabola data
    data = np.load('dataset/sho.npz')
    x_d = np.asarray(data["x_d"])
    x_v = np.asarray(data["x_v"])
    y_d = np.asarray(data["y_d"])
    y_v = np.asarray(data["y_v"])
    omega2_data = data["omega2"]
    N = data["N"]

    # Prepare data
    x = np.stack((x_d, x_v), axis=2)  # Shape (N, NT, 2)
    y0 = np.stack(
        (y_d[:, 0], y_v[:, 0]),
        axis=1)  # Initial conditions for prediction y, fed into propagator
    y_data = np.stack((y_d[:, 1:timesteps + 1], y_v[:, 1:timesteps + 1]),
                      axis=2)  # shape(NT, timesteps, 2)

    # Tensorflow placeholders for x, y0, y
    x_input = tf.placeholder(shape=(None, x.shape[1], x.shape[2]),
                             dtype=tf.float32,
                             name="enc_input")
    y0_input = tf.placeholder(shape=(None, 2),
                              dtype=tf.float32,
                              name="prop_input")  # input is d, v
    y_input = tf.placeholder(shape=(None, timesteps, 2),
                             dtype=tf.float32,
                             name="label_input")

    # Dynamics encoder
    encoder = helpers.Encoder()
    training = tf.placeholder_with_default(False, [])
    enc_output = encoder(x_input, training=training)
    z_input = tf.placeholder(
        shape=(None, 1),
        dtype=tf.float32)  # For when we want to bypass encoder
    z_data = omega2_data[:, np.newaxis]
    # enc_output = z_input  # Uncomment to bypass encoder

    # Propagating decoders
    prop_d = Propagator()
    prop_v = Propagator()

    rec_input = [y0_input]
    for i in range(timesteps):
        full_input = tf.concat(
            [rec_input[i], enc_output,
             tf.ones_like(enc_output)],
            axis=1,
            name="full_input")  # d, v, z1, 1
        rec_input.append(
            tf.concat(
                [prop_d(full_input), prop_v(full_input)],
                axis=1,
                name="c_prop_input"))
    y_hat = tf.stack(rec_input[1:], axis=1)  # Ignore initial conditions

    # Training
    opt = tf.train.RMSPropOptimizer(learning_rate=learning_rate)
    loss = tf.losses.mean_squared_error(labels=y_input, predictions=y_hat)
    train = tf.group([opt.minimize(loss), encoder.bn.updates])

    batch = helpers.batch_generator([x, y_data, y0, z_data],
                                    N,
                                    batch_size=batch_size)

    # Training session
    with tf.Session() as sess:
        for _ in range(trials):
            loss_i = np.nan

            while np.isnan(loss_i):
                loss_list = []
                sess.run(tf.global_variables_initializer())

                for i in range(n_epochs):
                    x_batch, y_batch, y0_batch, z_batch = next(batch)
                    feed_dict = {
                        x_input: x_batch,
                        y0_input: y0_batch,
                        y_input: y_batch,
                        z_input: z_batch,
                        training: True
                    }
                    _ = sess.run(train, feed_dict=feed_dict)
                    if i % summary_step == 0 or i == n_epochs - 1:
                        # print(sess.run(y_hat, feed_dict=feed_dict)[0])
                        feed_dict[training] = False
                        loss_i, z_arr = sess.run((loss, enc_output),
                                                 feed_dict=feed_dict)
                        r = np.corrcoef(z_batch[:, 0],
                                        z_arr[:,
                                              0])[1,
                                                  0]  # Correlation coefficient
                        loss_list.append(loss_i)
                        print("Epoch %d\tTotal loss: %f\tCorrelation: %f" %
                              (i, loss_i, r))
                        if np.isnan(loss_i):
                            break

            print("Done. Saving results.")

            # Save results
            results = {
                "summary_step": summary_step,
                "learning_rate": learning_rate,
                "n_epochs": n_epochs,
                "timesteps": timesteps,
                "loss_plot": loss_list,
            }

            trial_dir = helpers.get_trial_path(
                results_dir)  # Get directory in which to save trial results

            tf.saved_model.simple_save(sess,
                                       trial_dir,
                                       inputs={
                                           "x": x_input,
                                           "y0": y0_input,
                                           "training": training
                                       },
                                       outputs={
                                           "z": enc_output,
                                           "y": y_hat
                                       })

            # Save a summary of the parameters and results
            with open(os.path.join(trial_dir, 'summary.pickle'), "wb+") as f:
                pickle.dump(results, f)

            with open(os.path.join(results_dir, 'summary.txt'), 'a') as f:
                f.write("Error: %f\n\n" % loss_list[-1])
Esempio n. 4
0
def main(results_dir='results/kinematics/test',
         learning_rate=1e-2,
         reg_weight=1e-3,
         n_epochs1=5001,
         n_epochs2=5001,
         timesteps=5):
    # Hyperparameters
    summary_step = 500
    timesteps0 = 1

    # Import kinematics data
    data = np.load('dataset/kinematic.npz')
    x_d = np.asarray(data["x_d"])
    x_v = np.asarray(data["x_v"])
    y_d = np.asarray(data["y_d"])
    y_v = np.asarray(data["y_v"])
    a_data = np.asarray(data["g"])

    # Prepare data
    # The first few time steps are reserved for the symbolic regression propagator
    x = np.stack((x_d, x_v), axis=2)  # Shape (N, NT, 2)
    y0 = np.stack((y_d[:, 0], y_v[:, 0]),
                  axis=1)  # Input into the symbolic propagator
    label_data = np.stack((y_d[:, 1:timesteps + 1], y_v[:, 1:timesteps + 1]),
                          axis=2)  # shape(NG, timesteps, 2)

    # Encoder
    encoder = helpers.Encoder()  # layer should end with 1, which is the output
    x_input = tf.placeholder(shape=(None, x.shape[1], x.shape[2]),
                             dtype=tf.float32,
                             name="enc_input")
    y_input = tf.placeholder(shape=(None, timesteps, 2),
                             dtype=tf.float32,
                             name="label_input")
    training = tf.placeholder_with_default(False, [])
    z = encoder(x_input, training=training)
    # z = np.array(a_data)[:, np.newaxis]  # uncomment to ignore the autoencoder

    # Propagating decoder
    primitive_funcs = [
        *[functions.Constant()] * 2,
        *[functions.Identity()] * 4,
        *[functions.Square()] * 4,
        *[functions.Sin()] * 2,
        *[functions.Exp()] * 2,
        *[functions.Sigmoid()] * 2,
        *[functions.Product(norm=0.1)] * 2,
    ]
    prop_d = SymbolicNet(2, funcs=primitive_funcs)
    prop_v = SymbolicNet(2, funcs=primitive_funcs)
    prop_input = tf.placeholder(shape=(None, 2),
                                dtype=tf.float32,
                                name="prop_input")  # input is d, v

    def rec_sr(y0_input, enc_output, length, prop1=prop_d, prop2=prop_v):
        rec_input = [y0_input]
        for i in range(length):
            full_input = tf.concat(
                [rec_input[i], enc_output,
                 tf.ones_like(enc_output)],
                axis=1,
                name="full_input")  # d, v, z
            rec_input.append(
                tf.concat(
                    [prop1(full_input), prop2(full_input)],
                    axis=1,
                    name="c_prop_input"))
        output = tf.stack(rec_input[1:], axis=1)  # Ignore initial conditions
        return output

    y_hat_start = rec_sr(prop_input, z, timesteps0, prop_d, prop_v)
    y_hat_full = rec_sr(prop_input, z, timesteps, prop_d, prop_v)

    # Label and errors
    epoch = tf.placeholder(tf.float32)
    reg_weight_ph = tf.placeholder(tf.float32)
    reg_loss = regularization.l12_smooth(
        prop_d.get_weights()) + regularization.l12_smooth(prop_v.get_weights())

    # Training
    learning_rate_ph = tf.placeholder(tf.float32)
    opt = tf.train.RMSPropOptimizer(learning_rate=learning_rate_ph)

    def define_loss(prop_output, length):
        error = tf.losses.mean_squared_error(
            labels=y_input[:, :length, :],
            predictions=prop_output[:, :length, :])
        loss = error + reg_weight_ph * reg_loss
        train = opt.minimize(loss)
        train = tf.group([train, encoder.bn.updates])
        return error, loss, train

    error_start, loss_start, train_start = define_loss(y_hat_start, timesteps0)
    error_full, loss_full, train_full = define_loss(y_hat_full, timesteps)

    # Training session
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True  # Take up variable amount of memory on GPU
    with tf.Session(config=config) as sess:

        loss_i = np.nan
        while np.isnan(loss_i):

            loss_list = []
            error_list = []
            reg_list = []
            error, loss, train = error_start, loss_start, train_start

            sess.run(tf.global_variables_initializer())

            for i in range(n_epochs1):
                feed_dict = {
                    x_input: x,
                    prop_input: y0,
                    y_input: label_data,
                    epoch: 0,
                    learning_rate_ph: learning_rate,
                    training: True,
                    reg_weight_ph: reg_weight
                }
                _ = sess.run(train, feed_dict=feed_dict)
                if i % summary_step == 0:
                    feed_dict[training] = False
                    print_loss, print_error, print_l12 = sess.run(
                        (loss, error, reg_loss), feed_dict=feed_dict)
                    loss_list.append(print_loss)
                    error_list.append(print_error)
                    reg_list.append(print_l12)
                    print("Epoch %d\tTotal loss: %f\tError: %f\tReg loss: %f" %
                          (i, print_loss, print_error, print_l12))
                    loss_i = print_loss
                    if i > 2000:
                        error, loss, train = error_full, loss_full, train_full
                    if np.isnan(loss_i):
                        break

        # Setting small weights to 0 and freezing them
        prop_d_masked = MaskedSymbolicNet(sess, prop_d, threshold=0.1)
        prop_v_masked = MaskedSymbolicNet(sess, prop_v, threshold=0.1)

        # Rebuilding the decoding propagator
        prop_output_masked = rec_sr(prop_input, z, timesteps, prop_d_masked,
                                    prop_v_masked)
        error, loss, train = define_loss(prop_output_masked, timesteps)

        weights_d = sess.run(prop_d_masked.get_weights())
        expr_d = pretty_print.network(weights_d, primitive_funcs,
                                      ["d", "v", "z", 1])
        print(expr_d)
        weights_v = sess.run(prop_v_masked.get_weights())
        expr_v = pretty_print.network(weights_v, primitive_funcs,
                                      ["d", "v", "z", 1])
        print(expr_v)

        print("Frozen weights. Next stage of training.")

        for i in range(n_epochs2):
            feed_dict = {
                x_input: x,
                prop_input: y0,
                y_input: label_data,
                epoch: 0,
                learning_rate_ph: learning_rate / 10,
                training: True,
                reg_weight_ph: 0
            }
            _ = sess.run(train, feed_dict=feed_dict)
            if i % summary_step == 0:
                feed_dict[training] = False
                print_loss, print_error, print_l12 = sess.run(
                    (loss, error, reg_loss), feed_dict=feed_dict)
                loss_list.append(print_loss)
                error_list.append(print_error)
                reg_list.append(print_l12)
                print("Epoch %d\tError: %g" % (i, print_error))

        weights_d = sess.run(prop_d_masked.get_weights())
        expr_d = pretty_print.network(weights_d, primitive_funcs,
                                      ["d", "v", "z", 1])
        print(expr_d)
        weights_v = sess.run(prop_v_masked.get_weights())
        expr_v = pretty_print.network(weights_v, primitive_funcs,
                                      ["d", "v", "z", 1])
        print(expr_v)

        # Save results
        results = {
            "timesteps": timesteps,
            "summary_step": summary_step,
            "learning_rate": learning_rate,
            "n_epochs1": n_epochs1,
            "n_epochs2": n_epochs2,
            "reg_weight_ph": reg_weight,
            "weights_d": weights_d,
            "weights_v": weights_v,
            "loss_plot": loss_list,
            "error_plot": error_list,
            "l12_plot": reg_list,
            "expr_d": expr_d,
            "expr_v": expr_v
        }

        trial_dir = helpers.get_trial_path(
            results_dir)  # Get directory in which to save trial results

        tf.saved_model.simple_save(sess,
                                   trial_dir,
                                   inputs={
                                       "x": x_input,
                                       "y0": prop_input,
                                       "training": training
                                   },
                                   outputs={
                                       "z": z,
                                       "y": y_hat_full
                                   })

        # Save a summary of the parameters and results
        with open(os.path.join(trial_dir, 'summary.pickle'), "wb+") as f:
            pickle.dump(results, f)
Esempio n. 5
0
def main(results_dir='results/kinematics/test', learning_rate=1e-2, reg_weight=1e-3, n_epochs=10001,
         timesteps=5):
    tf.reset_default_graph()

    # Hyperparameters
    summary_step = 1000
    # tf.set_random_seed(0)

    # Import parabola data
    data = np.load('dataset/kinematic.npz')
    x_d = np.asarray(data["x_d"])
    x_v = np.asarray(data["x_v"])
    y_d = np.asarray(data["y_d"])
    y_v = np.asarray(data["y_v"])
    a_data = np.asarray(data["g"])

    # Prepare data
    # The first few time steps are reserved for the symbolic regression propagator
    x = np.stack((x_d, x_v), axis=2)    # Shape (N, NT, 2)
    y0 = np.stack((y_d[:, 0], y_v[:, 0]), axis=1)  # Input into the symbolic propagator
    y_data = np.stack((y_d[:, 1:timesteps + 1], y_v[:, 1:timesteps + 1]), axis=2)     # shape(NG, LENGTH, 2)

    # Encoder
    encoder = helpers.Encoder()     # layer should end with 1, which is the output
    x_input = tf.placeholder(shape=(None, x.shape[1], x.shape[2]), dtype=tf.float32, name="enc_input")
    y_input = tf.placeholder(shape=(None, timesteps, 2), dtype=tf.float32, name="label_input")
    y0_input = tf.placeholder(shape=(None, 2), dtype=tf.float32, name="y_input")  # input is d, v
    length_input = tf.placeholder(dtype=tf.int32, shape=())
    training = tf.placeholder_with_default(False, [])
    z = encoder(x_input, training=training)
    # enc_output = np.array(g_data)[:, np.newaxis]  # uncomment to ignore the autoencoder

    # Build EQL network for the propagating decoder
    primitive_funcs = [
        *[functions.Constant()] * 2,
        *[functions.Identity()] * 4,
        *[functions.Square()] * 4,
        *[functions.Sin()] * 2,
        *[functions.Exp()] * 2,
        *[functions.Sigmoid()] * 2,
        *[functions.Product(norm=0.1)] * 2,
    ]
    prop_d = SymbolicNetL0(2, funcs=primitive_funcs)
    prop_v = SymbolicNetL0(2, funcs=primitive_funcs)
    prop_d.build(4)
    prop_v.build(4)
    # Build recurrent structure
    rnn = tf.keras.layers.RNN(SymbolicCell(prop_d, prop_v), return_sequences=True)
    y0_rnn = tf.concat([tf.expand_dims(y0_input, axis=1), tf.zeros((tf.shape(y0_input)[0], length_input - 1, 2))], axis=1)
    prop_input = tf.concat([y0_rnn, tf.keras.backend.repeat(z, length_input),
                            tf.ones((tf.shape(y0_input)[0], length_input, 1))], axis=2)
    y_hat = rnn(prop_input)

    # Label and errors
    reg_loss = prop_d.get_loss() + prop_v.get_loss()

    # Training
    learning_rate_ph = tf.placeholder(tf.float32)
    opt = tf.train.RMSPropOptimizer(learning_rate=learning_rate_ph)
    error = tf.losses.mean_squared_error(labels=y_input[:, :length_input, :], predictions=y_hat)
    loss = error + reg_weight * reg_loss
    train = opt.minimize(loss)
    train = tf.group([train, encoder.bn.updates])

    # Training session
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True   # Take up variable amount of memory on GPU
    with tf.Session(config=config) as sess:
        loss_i = np.nan
        while np.isnan(loss_i):
            loss_list = []
            error_list = []
            reg_list = []

            sess.run(tf.global_variables_initializer())
            length_i = 1

            for i in range(n_epochs):
                lr_i = learning_rate

                feed_dict = {x_input: x, y0_input: y0, y_input: y_data,
                             learning_rate_ph: lr_i, training: True, length_input: length_i}
                _ = sess.run(train, feed_dict=feed_dict)
                if i % summary_step == 0:
                    feed_dict[training] = False
                    loss_val, error_val, reg_val = sess.run((loss, error, reg_loss), feed_dict=feed_dict)
                    loss_list.append(loss_val)
                    error_list.append(error_val)
                    reg_list.append(reg_val)
                    print("Epoch %d\tTotal loss: %f\tError: %f\tReg loss: %f" % (i, loss_val, error_val, reg_val))
                    loss_i = loss_val

                    if i > 3000:
                        length_i = timesteps
                    if np.isnan(loss_i):
                        break

        weights_d = sess.run(prop_d.get_weights())
        expr_d = pretty_print.network(weights_d, primitive_funcs, ["d", "v", "z", 1])
        print(expr_d)
        weights_v = sess.run(prop_v.get_weights())
        expr_v = pretty_print.network(weights_v, primitive_funcs, ["d", "v", "z", 1])
        print(expr_v)

        # z_arr = sess.run(enc_output, feed_dict=feed_dict)

        # Save results
        results = {
            "timesteps": timesteps,
            "summary_step": summary_step,
            "learning_rate": learning_rate,
            "N_EPOCHS": n_epochs,
            "reg_weight": reg_weight,
            "weights_d": weights_d,
            "weights_v": weights_v,
            "loss_plot": loss_list,
            "error_plot": error_list,
            "l12_plot": reg_list,
            "expr_d": expr_d,
            "expr_v": expr_v
        }

        trial_dir = helpers.get_trial_path(results_dir)     # Get directory in which to save trial results
        tf.saved_model.simple_save(sess, trial_dir,
                                   inputs={"x": x_input, "y0": y0_input, "training": training},
                                   outputs={"z": z, "y": y_hat})

        # Save a summary of the parameters and results
        with open(os.path.join(trial_dir, 'summary.pickle'), "wb+") as f:
            pickle.dump(results, f)
Esempio n. 6
0
def main(results_dir='results/sho/test',
         trials=20,
         learning_rate=1e-3,
         reg_weight=1e-3,
         timesteps=25,
         batch_size=128,
         n_epochs1=10001,
         n_epochs2=10001):

    # Hyperparameters
    summary_step = 1000

    primitive_funcs = [
        *[functions.Constant()] * 2,
        *[functions.Identity()] * 4,
        *[functions.Square()] * 4,
        *[functions.Sin()] * 2,
        *[functions.Exp()] * 2,
        *[functions.Sigmoid()] * 2,
        *[functions.Product(norm=0.1)] * 2,
    ]

    # Import parabola data
    data = np.load('dataset/sho.npz')
    x_d = np.asarray(data["x_d"])
    x_v = np.asarray(data["x_v"])
    y_d = np.asarray(data["y_d"])
    y_v = np.asarray(data["y_v"])
    omega2_data = data["omega2"]
    N = data["N"]

    # Prepare data
    x = np.stack((x_d, x_v), axis=2)  # Shape (N, NT, 2)
    y0 = np.stack(
        (y_d[:, 0], y_v[:, 0]),
        axis=1)  # Initial conditions for prediction y, fed into propagator
    y_data = np.stack((y_d[:, 1:timesteps + 1], y_v[:, 1:timesteps + 1]),
                      axis=2)  # shape(NG, timesteps, 2)
    z_data = omega2_data[:, np.newaxis]

    # Tensorflow placeholders for x, y0, y
    x_input = tf.placeholder(shape=(None, x.shape[1], x.shape[2]),
                             dtype=tf.float32,
                             name="enc_input")
    y0_input = tf.placeholder(shape=(None, 2),
                              dtype=tf.float32,
                              name="prop_input")  # input is d, v
    y_input = tf.placeholder(shape=(None, timesteps, 2),
                             dtype=tf.float32,
                             name="label_input")
    length_input = tf.placeholder(dtype=tf.int32, shape=())

    # Dynamics encoder
    encoder = helpers.Encoder(n_filters=[16, 16, 16, 16])
    training = tf.placeholder_with_default(False, [])
    z = encoder(x_input, training=training)

    # Propagating decoders
    prop_d = SymbolicNetL0(2, funcs=primitive_funcs)
    prop_v = SymbolicNetL0(2, funcs=primitive_funcs)
    prop_d.build(4)
    prop_v.build(4)
    # Building recurrent structure
    rnn = tf.keras.layers.RNN(SymbolicCell(prop_d, prop_v),
                              return_sequences=True)
    y0_rnn = tf.concat([
        tf.expand_dims(y0_input, axis=1),
        tf.zeros((tf.shape(y0_input)[0], length_input - 1, 2))
    ],
                       axis=1)
    prop_input = tf.concat([
        y0_rnn,
        tf.keras.backend.repeat(z, length_input),
        tf.ones((tf.shape(y0_input)[0], length_input, 1))
    ],
                           axis=2)
    y_hat = rnn(prop_input)
    length_list = [1, 2, 3, 4, 5, 7, 10, 15,
                   25]  # Slowly increase the length of propagation

    # Training
    learning_rate_ph = tf.placeholder(tf.float32)
    opt = tf.train.RMSPropOptimizer(learning_rate=learning_rate_ph)
    reg_weight_ph = tf.placeholder(tf.float32)
    reg_loss = prop_d.get_loss() + prop_v.get_loss()
    error = tf.losses.mean_squared_error(labels=y_input[:, :length_input, :],
                                         predictions=y_hat)
    loss = error + reg_weight_ph * reg_loss
    train = tf.group([opt.minimize(loss), encoder.bn.updates])

    batch = helpers.batch_generator([x, y_data, y0, z_data],
                                    N=N,
                                    batch_size=batch_size)

    # Training session
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    with tf.Session(config=config) as sess:
        for _ in range(trials):
            loss_i = np.nan

            while np.isnan(loss_i):
                loss_list = []
                error_list = []
                reg_list = []

                sess.run(tf.global_variables_initializer())
                length_i = 1

                for i in range(n_epochs1 + n_epochs2):
                    if i < n_epochs1:
                        lr_i = learning_rate
                    else:
                        lr_i = learning_rate / 10

                    x_batch, y_batch, y0_batch, z_batch = next(batch)
                    feed_dict = {
                        x_input: x_batch,
                        y0_input: y0_batch,
                        y_input: y_batch,
                        learning_rate_ph: lr_i,
                        training: True,
                        reg_weight_ph: reg_weight,
                        length_input: length_i
                    }

                    _ = sess.run(train, feed_dict=feed_dict)

                    if i % summary_step == 0:
                        feed_dict[training] = False
                        loss_i, error_i, reg_i, z_arr = sess.run(
                            (loss, error, reg_loss, z), feed_dict=feed_dict)
                        r = np.corrcoef(z_batch[:, 0], z_arr[:, 0])[1, 0]
                        loss_list.append(loss_i)
                        error_list.append(error_i)
                        reg_list.append(reg_i)
                        print(
                            "Epoch %d\tTotal loss: %f\tError: %f\tReg loss: %f\tCorrelation: %f"
                            % (i, loss_i, error_i, reg_i, r))
                        if np.isnan(loss_i):
                            break

                        i_length = min(i // 1000, len(length_list) - 1)
                        length_i = length_list[i_length]

            weights_d = sess.run(prop_d.get_weights())
            expr_d = pretty_print.network(weights_d, primitive_funcs,
                                          ["d", "v", "z", 1])
            print(expr_d)
            weights_v = sess.run(prop_v.get_weights())
            expr_v = pretty_print.network(weights_v, primitive_funcs,
                                          ["d", "v", "z", 1])
            print(expr_v)

            print("Done. Saving results.")

            # z_arr = sess.run(z, feed_dict=feed_dict)

            # Save results
            results = {
                "summary_step": summary_step,
                "learning_rate": learning_rate,
                "n_epochs1": n_epochs1,
                "reg_weight": reg_weight,
                "timesteps": timesteps,
                "weights_d": weights_d,
                "weights_v": weights_v,
                "loss_plot": loss_list,
                "error_plot": error_list,
                "reg_plot": reg_list,
                "expr_d": expr_d,
                "expr_v": expr_v
            }

            trial_dir = helpers.get_trial_path(
                results_dir)  # Get directory in which to save trial results

            tf.saved_model.simple_save(sess,
                                       trial_dir,
                                       inputs={
                                           "x": x_input,
                                           "y0": y0_input,
                                           "training": training
                                       },
                                       outputs={
                                           "z": z,
                                           "y": y_hat
                                       })

            # Save a summary of the parameters and results
            with open(os.path.join(trial_dir, 'summary.pickle'), "wb+") as f:
                pickle.dump(results, f)

            with open(os.path.join(results_dir, 'eq_summary.txt'), 'a') as f:
                f.write(str(expr_d) + "\n")
                f.write(str(expr_v) + "\n")
                f.write("Error: %f\n\n" % error_list[-1])