def get_img(self, img_path): img = cv2.imread(img_path) crop = img_ops.center_crop( img, self.crop_size, self.crop_size) if self.crop_size is not None else img resized_img = cv2.resize( crop, (self.out_size, self.out_size)) if self.out_size is not None else crop return img_ops.bound_image_values(resized_img)
def generate_train_mb(self): train_size = self.lab_data.shape[0] for i in xrange(0, train_size, self.batch_size): lab_data_batch = self.lab_data[i:i + self.batch_size, :, :, :] labels_batch = self.labels[i:i + self.batch_size] lab_data_batch, labels_batch = self.fill_batch( lab_data_batch, labels_batch, self.lab_data, self.labels) yield bound_image_values(lab_data_batch).astype( np.float32), self.one_hot_labels(labels_batch)
def generate_train_mb(self): train_size = self.unlab_data.shape[0] for i in xrange(0, train_size, self.batch_size): data_batch = self.unlab_data[i:i + self.batch_size, :, :, :] if data_batch.shape[0] < self.batch_size: data_batch = np.concatenate( (data_batch, self.unlab_data[0:self.batch_size - data_batch.shape[0], :, :, :])) yield bound_image_values(data_batch).astype(np.float32)
def generate_test_mb(self): for i in xrange(0, self.test_data.shape[0], self.batch_size): data_batch = self.test_data[i:i + self.batch_size, :, :, :] labels_batch = self.test_labels[i:i + self.batch_size] data_batch, labels_batch = self.fill_batch(data_batch, labels_batch, self.test_data, self.test_labels) data_batch = bound_image_values(data_batch).astype(np.float32) yield data_batch, self.one_hot_labels(labels_batch)
def generate_train_mb(self): train_size = self.unlab_data.shape[0] inds = self.rng.permutation(train_size) unlab_data = self.unlab_data[inds, :, :, :] lab_data, labels = self.extend_labeled_data(self.lab_data, self.labels, unlab_data) for i in xrange(0, train_size, self.batch_size): lab_data_batch = lab_data[i:i + self.batch_size, :, :, :] unlab_data_batch = unlab_data[i:i + self.batch_size, :, :, :] labels_batch = labels[i:i + self.batch_size] lab_data_batch, labels_batch = self.fill_batch( lab_data_batch, labels_batch, lab_data, labels) if unlab_data_batch.shape[0] < self.batch_size: unlab_data_batch = np.concatenate( (unlab_data_batch, unlab_data[0:self.batch_size - unlab_data_batch.shape[0]]), axis=0) yield bound_image_values(lab_data_batch).astype(np.float32), \ bound_image_values(unlab_data_batch).astype(np.float32), self.one_hot_labels(labels_batch)
def transform(img_arr, scale_img_opt): if scale_img_opt == '0_to_1': return img_ops.bound_image_values_01(img_arr).astype(np.float32) else: return img_ops.bound_image_values(img_arr).astype(np.float32)