Esempio n. 1
0
def detection(image_path):

    # parameters for loading data and images
    detection_model_path = 'C:\\Users\\l1f15bscs0049\\Desktop\\haarcascade_frontalface_default.xml'

    font = cv2.FONT_HERSHEY_SIMPLEX

    # hyper-parameters for bounding boxes shape
    gender_offsets = (30, 60)
    gender_offsets = (10, 10)

    # loading models
    face_detection = load_detection_model(detection_model_path)

    # loading images
    rgb_image = load_image(image_path, grayscale=False)
    gray_image = load_image(image_path, grayscale=True)
    gray_image = np.squeeze(gray_image)
    gray_image = gray_image.astype('uint8')
    count1 = 0
    faces = detect_faces(face_detection, gray_image)
    for face_coordinates in faces:
        x1, x2, y1, y2 = apply_offsets(face_coordinates, gender_offsets)
        rgb_face = rgb_image[y1:y2, x1:x2]

        rgb_face = preprocess_input(rgb_face, False)
        rgb_face = np.expand_dims(rgb_face, 0)

        color = (0, 0, 255)
        draw_bounding_box(face_coordinates, rgb_image, color)
        count1 = count1 + 1

    bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
    #cv2.imwrite('C:\\Users\\l1f15bscs0049\\Desktop\\test_cases\\testt2.png', bgr_image)
    return count1
Esempio n. 2
0
    def get_emotion(self, image_path_, face_detection, emotion_classifier,
                    gender_classifier):
        #print(face_detection)

        emotion_labels = get_labels('fer2013')
        gender_labels = get_labels('imdb')
        font = cv2.FONT_HERSHEY_SIMPLEX

        # hyper-parameters for bounding boxes shape
        # change for variance
        gender_offsets = (30, 60)
        gender_offsets = (10, 10)
        emotion_offsets = (20, 40)
        emotion_offsets = (0, 0)

        # loading models

        # getting input model shapes for inference
        emotion_target_size = emotion_classifier.input_shape[1:3]
        gender_target_size = gender_classifier.input_shape[1:3]

        #By default, set emotion to "Neutral" and gender to "Unknown"
        emotion_text = "happy"
        gender_text = "Unknown"

        # loading images
        rgb_image = load_image(image_path_, grayscale=False)
        gray_image = load_image(image_path_, grayscale=True)
        gray_image = np.squeeze(gray_image)
        gray_image = gray_image.astype('uint8')

        faces = detect_faces(face_detection, gray_image)
        for face_coordinates in faces:
            x1, x2, y1, y2 = apply_offsets(face_coordinates, gender_offsets)
            rgb_face = rgb_image[y1:y2, x1:x2]

            x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
            gray_face = gray_image[y1:y2, x1:x2]

            try:
                rgb_face = cv2.resize(rgb_face, (gender_target_size))
                gray_face = cv2.resize(gray_face, (emotion_target_size))
            except:
                continue

            rgb_face = preprocess_input(rgb_face, False)
            rgb_face = np.expand_dims(rgb_face, 0)
            gender_prediction = gender_classifier.predict(rgb_face)
            gender_label_arg = np.argmax(gender_prediction)
            gender_text = gender_labels[gender_label_arg]

            gray_face = preprocess_input(gray_face, True)
            gray_face = np.expand_dims(gray_face, 0)
            gray_face = np.expand_dims(gray_face, -1)
            emotion_label_arg = np.argmax(
                emotion_classifier.predict(gray_face))
            emotion_text = emotion_labels[emotion_label_arg]

        return emotion_text, gender_text
Esempio n. 3
0
    def detect(self, image_path):
        # loading images
        rgb_image = load_image(image_path, grayscale=False)
        gray_image = load_image(image_path, grayscale=True)
        gray_image = np.squeeze(gray_image)
        gray_image = gray_image.astype('uint8')

        res = []

        faces = detect_faces(self.face_detection, gray_image)
        for face_coordinates in faces:
            x1, x2, y1, y2 = apply_offsets(face_coordinates,
                                           self.gender_offsets)
            rgb_face = rgb_image[y1:y2, x1:x2]

            x1, x2, y1, y2 = apply_offsets(face_coordinates,
                                           self.emotion_offsets)
            gray_face = gray_image[y1:y2, x1:x2]

            try:
                rgb_face = cv2.resize(rgb_face, (self.gender_target_size))
                gray_face = cv2.resize(gray_face, (self.emotion_target_size))
            except:
                continue

            rgb_face = preprocess_input(rgb_face, False)
            rgb_face = np.expand_dims(rgb_face, 0)
            gender_prediction = self.gender_classifier.predict(rgb_face)
            gender_label_arg = np.argmax(gender_prediction)
            gender_text = self.gender_labels[gender_label_arg]

            gray_face = preprocess_input(gray_face, True)
            gray_face = np.expand_dims(gray_face, 0)
            gray_face = np.expand_dims(gray_face, -1)
            emotion_label_arg = np.argmax(
                self.emotion_classifier.predict(gray_face))
            emotion_text = self.emotion_labels[emotion_label_arg]

            if gender_text == self.gender_labels[0]:
                color = (0, 0, 255)
            else:
                color = (255, 0, 0)

            res.append({
                'left': x1,
                'top': y1,
                'right': x2,
                'bottom': y2,
                'male': gender_text,
                'emotion': emotion_text
            })

            # print(gender_text, emotion_text)
            # draw = ImageDraw.Draw(img)
            # draw.rectangle(((x1, y1), (x2,y2)), outline='red')
            # draw.text((0, 0), "something123")
        return res
Esempio n. 4
0
def recognition(f_2_s):

    # parameters for loading data and images
    #image_path = path_r
    image_path = image_handler(f_2_s)
    detection_model_path = '../trained_models/detection_models/haarcascade_frontalface_default.xml'
    emotion_model_path = '../trained_models/emotion_models/fer2013_mini_XCEPTION.102-0.66.hdf5'
    emotion_labels = get_labels('fer2013')
    font = cv2.FONT_HERSHEY_SIMPLEX

    # hyper-parameters for bounding boxes shape
    emotion_offsets = (20, 40)
    emotion_offsets = (0, 0)

    # loading models
    face_detection = load_detection_model(detection_model_path)
    emotion_classifier = load_model(emotion_model_path, compile=False)

    # getting input model shapes for inference
    emotion_target_size = emotion_classifier.input_shape[1:3]

    # loading images
    rgb_image = load_image(image_path, grayscale=False)
    gray_image = load_image(image_path, grayscale=True)
    gray_image = np.squeeze(gray_image)
    gray_image = gray_image.astype('uint8')

    faces = detect_faces(face_detection, gray_image)
    for face_coordinates in faces:

        x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
        gray_face = gray_image[y1:y2, x1:x2]

        try:
            gray_face = cv2.resize(gray_face, (emotion_target_size))
        except:
            continue

        gray_face = preprocess_input(gray_face, True)
        gray_face = np.expand_dims(gray_face, 0)
        gray_face = np.expand_dims(gray_face, -1)
        emotion_label_arg = np.argmax(emotion_classifier.predict(gray_face))
        emotion_text = ""
        emotion_text = emotion_labels[emotion_label_arg]

        color = (255, 0, 0)  # 감정 정보 글씨 빨간색, 사각형도

        draw_bounding_box(face_coordinates, rgb_image, color)
        draw_text(face_coordinates, rgb_image, emotion_text, color, 0, -30,
                  1.5, 2)
    #if(emotion_text == ""):
    #recognition(f_2_s)

    bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
    cv2.imwrite('../images/predicted_test_image.png', bgr_image)  # 변수 활용
    check_recoged_img('../images/predicted_test_image.png')
def run_classify(image_path):
    emotion_text = ''
    gender_text = ''
    # loading images
    rgb_image = load_image(image_path, grayscale=False)
    gray_image = load_image(image_path, grayscale=True)
    gray_image = np.squeeze(gray_image)
    gray_image = gray_image.astype('uint8')

    faces = detect_faces(face_detection, gray_image)
    for face_coordinates in faces:
        x1, x2, y1, y2 = apply_offsets(face_coordinates, gender_offsets)
        rgb_face = rgb_image[y1:y2, x1:x2]

        x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
        gray_face = gray_image[y1:y2, x1:x2]

        try:
            rgb_face = cv2.resize(rgb_face, (gender_target_size))
            gray_face = cv2.resize(gray_face, (emotion_target_size))
        except:
            continue

        rgb_face = preprocess_input(rgb_face, False)
        rgb_face = np.expand_dims(rgb_face, 0)
        gender_prediction = gender_classifier.predict(rgb_face)
        gender_label_arg = np.argmax(gender_prediction)
        gender_text = gender_labels[gender_label_arg]

        gray_face = preprocess_input(gray_face, True)
        gray_face = np.expand_dims(gray_face, 0)
        gray_face = np.expand_dims(gray_face, -1)
        emotion_label_arg = np.argmax(emotion_classifier.predict(gray_face))
        emotion_text = emotion_labels[emotion_label_arg]

        if gender_text == gender_labels[0]:
            color = (0, 0, 255)
        else:
            color = (255, 0, 0)

        draw_bounding_box(face_coordinates, rgb_image, color)
        draw_text(face_coordinates, rgb_image, gender_text, color, 0, -20, 1,
                  2)
        draw_text(face_coordinates, rgb_image, emotion_text, color, 0, -50, 1,
                  2)

    bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
    cv2.imwrite(os.path.join(dir, '../images/predicted_test_image.png'),
                bgr_image)

    return ([gender_text, emotion_text])
Esempio n. 6
0
def make_label(image_path):
    # loading models
    face_detection = load_detection_model(detection_model_path)
    emotion_classifier = load_model(emotion_model_path, compile=False)
    gender_classifier = load_model(gender_model_path, compile=False)

    # getting input model shapes for inference
    emotion_target_size = emotion_classifier.input_shape[1:3]
    gender_target_size = gender_classifier.input_shape[1:3]

    # loading images
    rgb_image = load_image(image_path, grayscale=False)
    gray_image = load_image(image_path, grayscale=True)
    gray_image = np.squeeze(gray_image)
    gray_image = gray_image.astype('uint8')

    faces = detect_faces(face_detection, gray_image)
    for face_coordinates in faces:
        x1, x2, y1, y2 = apply_offsets(face_coordinates, gender_offsets)
        rgb_face = rgb_image[y1:y2, x1:x2]

        x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
        gray_face = gray_image[y1:y2, x1:x2]

        try:
            rgb_face = cv2.resize(rgb_face, (gender_target_size))
            gray_face = cv2.resize(gray_face, (emotion_target_size))
        except:
            continue

        rgb_face = preprocess_input(rgb_face, False)
        rgb_face = np.expand_dims(rgb_face, 0)
        gender_prediction = gender_classifier.predict(rgb_face)
        gender_label_arg = np.argmax(gender_prediction)
        gender_text = gender_labels[gender_label_arg]

        gray_face = preprocess_input(gray_face, True)
        gray_face = np.expand_dims(gray_face, 0)
        gray_face = np.expand_dims(gray_face, -1)
        emotion_label_arg = np.argmax(emotion_classifier.predict(gray_face))
        emotion_text = emotion_labels[emotion_label_arg]

        if gender_text == gender_labels[0]:
            color = (0, 0, 255)
        else:
            color = (255, 0, 0)


    return emotion_text
Esempio n. 7
0
def getFaceEmotion(image_path):
    # parameters for loading data and images
    base = 'C://Users/lenovo/Desktop/moodify/components/emotion-classification'
    detection_model_path = base + '/trained_models/detection_models/haarcascade_frontalface_default.xml'
    emotion_model_path = base + '/trained_models/emotion_models/fer2013_denseNet.59-0.68.hdf5'
    emotion_labels = get_labels('fer2013')
    font = cv2.FONT_HERSHEY_SIMPLEX

    # hyper-parameters for bounding boxes shape
    emotion_offsets = (0, 0)

    # loading models
    face_detection = load_detection_model(detection_model_path)
    emotion_classifier = load_model(emotion_model_path, compile=False)

    # getting input model shapes for inference
    emotion_target_size = emotion_classifier.input_shape[1:3]

    # loading images
    rgb_image = load_image(image_path, grayscale=False)
    gray_image = load_image(image_path, grayscale=True)
    gray_image = np.squeeze(gray_image)
    gray_image = gray_image.astype('uint8')

    faces = detect_faces(face_detection, gray_image)
    for face_coordinates in faces:
        x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
        gray_face = gray_image[y1:y2, x1:x2]

        try:
            gray_face = cv2.resize(gray_face, (emotion_target_size))
        except:
            continue

        gray_face = preprocess_input(gray_face, True)
        gray_face = np.expand_dims(gray_face, 0)
        gray_face = np.expand_dims(gray_face, -1)
        emotion_label_arg = np.argmax(emotion_classifier.predict(gray_face))
        emotion_text = emotion_labels[emotion_label_arg]

        color = (255, 0, 0)
        draw_bounding_box(face_coordinates, rgb_image, color)
        draw_text(face_coordinates, rgb_image, emotion_text, color, 0, -10,
                  0.5, 2)

    bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
    cv2.imwrite('predicted_test_image.png', bgr_image)
    return emotion_text
Esempio n. 8
0
def handleRequest():
    image_url = ""

    try:
        image_url = request.forms.get('image_url')
        print "THE IMAGE: ", image_url
    except:
        print "[ERR] Dead Image"
        return "-1"

    image_path = cStringIO.StringIO(urllib.urlopen(image_url).read())
    # loading images
    rgb_image = load_image(image_path, grayscale=False)
    gray_image = load_image(image_path, grayscale=True)
    gray_image = np.squeeze(gray_image)
    gray_image = gray_image.astype('uint8')

    faces = detect_faces(face_detection, gray_image)
    for face_coordinates in faces:
        print "Inside"
        x1, x2, y1, y2 = apply_offsets(face_coordinates, gender_offsets)
        rgb_face = rgb_image[y1:y2, x1:x2]

        x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
        gray_face = gray_image[y1:y2, x1:x2]

        try:
            rgb_face = cv2.resize(rgb_face, (gender_target_size))
        except:
            continue

        rgb_face = preprocess_input(rgb_face, False)
        rgb_face = np.expand_dims(rgb_face, 0)
        gender_prediction = gender_classifier.predict(rgb_face)
        gender_label_arg = np.argmax(gender_prediction)
        gender_text = gender_labels[gender_label_arg]

        print "Predicted Gender: ", gender_text

        if gender_text == gender_labels[0]:
            print "[LOG] Man"

        else:
            print "[LOG] Woman"
            return "1"

    return "0"
def predict(image_path):
    # loading images
    start = time.time()
    rgb_image = load_image(image_path, grayscale=False)
    gray_image = load_image(image_path, grayscale=True)
    gray_image = np.squeeze(gray_image)
    gray_image = gray_image.astype('uint8')
    with graph.as_default():
        faces = detect_faces(face_detection, gray_image)
        for face_coordinates in faces:
            x1, x2, y1, y2 = apply_offsets(face_coordinates, gender_offsets)
            rgb_face = rgb_image[y1:y2, x1:x2]
            x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
            gray_face = gray_image[y1:y2, x1:x2]
            try:
                rgb_face = cv2.resize(rgb_face, (gender_target_size))
                gray_face = cv2.resize(gray_face, (emotion_target_size))
            except:
                continue
            rgb_face = preprocess_input(rgb_face, False)
            rgb_face = np.expand_dims(rgb_face, 0)
            gender_prediction = gender_classifier.predict(rgb_face)
            gender_label_arg = np.argmax(gender_prediction)
            gender_text = gender_labels[gender_label_arg]
            gray_face = preprocess_input(gray_face, True)
            gray_face = np.expand_dims(gray_face, 0)
            gray_face = np.expand_dims(gray_face, -1)
            emotion_label_arg = np.argmax(emotion_classifier.predict(gray_face))
            emotion_text = emotion_labels[emotion_label_arg]

            if gender_text == gender_labels[0]:
                color = (0, 0, 255)
            else:
                color = (255, 0, 0)

            draw_bounding_box(face_coordinates, rgb_image, color)
            draw_text(face_coordinates, rgb_image, gender_text, color, 0, -10, 1, 2)
            draw_text(face_coordinates, rgb_image, emotion_text, color, 0, -40, 1, 2)

        bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
        resized_image = cv2.resize(bgr_image, (1024, 769))
    file_path = 'result/' + image_path.split('/')[-1]
    cv2.imwrite(file_path, resized_image)
    end = time.time()
    logging.info('[Time] for prediction(): {}'.format(end - start))
    return file_path
Esempio n. 10
0
    def get_gender(self, image_path_, face_detection, emotion_classifier,
                   gender_classifier):

        gender_labels = get_labels('imdb')

        # hyper-parameters for bounding boxes shape
        # change for variance
        gender_offsets = (30, 60)
        gender_offsets = (10, 10)
        emotion_offsets = (20, 40)
        emotion_offsets = (0, 0)

        # loading models
        # getting input model shapes for inference
        gender_target_size = gender_classifier.input_shape[1:3]

        # loading images
        rgb_image = load_image(image_path_, grayscale=False)
        gray_image = load_image(image_path_, grayscale=True)
        gray_image = np.squeeze(gray_image)
        gray_image = gray_image.astype('uint8')

        faces = detect_faces(face_detection, gray_image)
        for face_coordinates in faces:
            x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
            gray_face = gray_image[y1:y2, x1:x2]
            rgb_face = rgb_image[y1:y2, x1:x2]

            try:
                rgb_face = cv2.resize(rgb_face, (gender_target_size))
                gray_face = cv2.resize(gray_face, (emotion_target_size))
            except:
                continue

            rgb_face = preprocess_input(rgb_face, False)
            rgb_face = np.expand_dims(rgb_face, 0)
            gender_prediction = gender_classifier.predict(rgb_face)
            gender_label_arg = np.argmax(gender_prediction)
            gender_text = gender_labels[gender_label_arg]

            gray_face = preprocess_input(gray_face, True)
            gray_face = np.expand_dims(gray_face, 0)
            gray_face = np.expand_dims(gray_face, -1)

            return gender_text
Esempio n. 11
0
def on_data(data):
    f = open('current.jpg', 'wb')
    f.write(base64.decodebytes(data))
    f.close()
    image_path = "current.jpg"

    out = []
    # loading images
    rgb_image = load_image(image_path, grayscale=False)
    gray_image = load_image(image_path, grayscale=True)
    gray_image = np.squeeze(gray_image)
    gray_image = gray_image.astype('uint8')

    faces = detect_faces(face_detection, gray_image)
    for face_coordinates in faces:
        x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
        gray_face = gray_image[y1:y2, x1:x2]

        try:
            gray_face = cv2.resize(gray_face, (emotion_target_size))
        except:
            continue

        gray_face = preprocess_input(gray_face, True)
        gray_face = np.expand_dims(gray_face, 0)
        gray_face = np.expand_dims(gray_face, -1)
        emotion_label_arg = np.argmax(emotion_classifier.predict(gray_face))
        emotion_text = emotion_labels[emotion_label_arg]
        color = (0, 0, 255)

        draw_bounding_box(face_coordinates, rgb_image, color)
        draw_text(face_coordinates, rgb_image, emotion_text, color, 0, -50, 1,
                  2)
        bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)

        cv2.imwrite('predicted.png', bgr_image)
        data = open('predicted.png', 'rb').read()
        encoded = base64.encodebytes(data).decode('utf-8')
        out.append({
            'image': encoded,
            'emotion': emotion_text,
        })

    return out
Esempio n. 12
0
def detect(net, meta, image, thresh=.2, hier_thresh=.5, nms=.45):
    im = load_image(image, 0, 0)
    num = c_int(0)
    pnum = pointer(num)
    predict_image(net, im)
    dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, None, 0,
                             pnum)
    num = pnum[0]
    if (nms): do_nms_obj(dets, num, meta.classes, nms)

    res = []
    for j in range(num):
        for i in range(meta.classes):
            if dets[j].prob[i] > 0:
                b = dets[j].bbox
                res.append(
                    (meta.names[i], dets[j].prob[i], (b.x, b.y, b.w, b.h)))
    res = sorted(res, key=lambda x: -x[1])
    free_image(im)
    free_detections(dets, num)
    return res
gender_offsets = (30, 60)
gender_offsets = (10, 10)
emotion_offsets = (20, 40)
emotion_offsets = (0, 0)

# loading models
face_detection = load_detection_model(detection_model_path)
emotion_classifier = load_model(emotion_model_path, compile=False)
gender_classifier = load_model(gender_model_path, compile=False)

# getting input model shapes for inference
emotion_target_size = emotion_classifier.input_shape[1:3]
gender_target_size = gender_classifier.input_shape[1:3]

# loading images
rgb_image = load_image(image_path, grayscale=False)
gray_image = load_image(image_path, grayscale=True)
gray_image = np.squeeze(gray_image)
gray_image = gray_image.astype('uint8')

faces = detect_faces(face_detection, gray_image)
for face_coordinates in faces:
    x1, x2, y1, y2 = apply_offsets(face_coordinates, gender_offsets)
    rgb_face = rgb_image[y1:y2, x1:x2]

    x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
    gray_face = gray_image[y1:y2, x1:x2]

    try:
        rgb_face = cv2.resize(rgb_face, (gender_target_size))
        gray_face = cv2.resize(gray_face, (emotion_target_size))
def emotion_identify(img_url):
    # parameters for loading data and images

    detection_model_path = 'C:/Users/Admin/PycharmProjects/Emotion_Detection/trained_models/detection_models/haarcascade_frontalface_default.xml'
    emotion_model_path = 'C:/Users/Admin/PycharmProjects/Emotion_Detection/trained_models/emotion_models/fer2013_mini_XCEPTION.102-0.66.hdf5'
    gender_model_path = 'C:/Users/Admin/PycharmProjects/Emotion_Detection/trained_models/gender_models/simple_CNN.81-0.96.hdf5'
    emotion_labels = get_labels('fer2013')
    gender_labels = get_labels('imdb')
    font = cv2.FONT_HERSHEY_SIMPLEX

    # hyper-parameters for bounding boxes shape
    gender_offsets = (30, 60)
    gender_offsets = (10, 10)
    emotion_offsets = (20, 40)
    emotion_offsets = (0, 0)

    # loading models
    face_detection = load_detection_model(detection_model_path)
    emotion_classifier = load_model(emotion_model_path, compile=False)
    gender_classifier = load_model(gender_model_path, compile=False)

    # getting input model shapes for inference
    emotion_target_size = emotion_classifier.input_shape[1:3]
    gender_target_size = gender_classifier.input_shape[1:3]
    # loading images
    image_path = img_url
    rgb_image = load_image(image_path, grayscale=False)
    gray_image = load_image(image_path, grayscale=True)
    gray_image = np.squeeze(gray_image)
    gray_image = gray_image.astype('uint8')

    faces = detect_faces(face_detection, gray_image)
    if len(faces) == 0:
        print("No face")
        K.clear_session()
        return False

    emotions = collections.defaultdict(int)
    for face_coordinates in faces:
        x1, x2, y1, y2 = apply_offsets(face_coordinates, gender_offsets)
        rgb_face = rgb_image[y1:y2, x1:x2]

        x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
        gray_face = gray_image[y1:y2, x1:x2]

        try:
            rgb_face = cv2.resize(rgb_face, (gender_target_size))
            gray_face = cv2.resize(gray_face, (emotion_target_size))
        except:
            continue

        rgb_face = preprocess_input(rgb_face, False)
        rgb_face = np.expand_dims(rgb_face, 0)
        gender_prediction = gender_classifier.predict(rgb_face)
        gender_label_arg = np.argmax(gender_prediction)
        gender_text = gender_labels[gender_label_arg]

        gray_face = preprocess_input(gray_face, True)
        gray_face = np.expand_dims(gray_face, 0)
        gray_face = np.expand_dims(gray_face, -1)
        emotion_label_arg = np.argmax(emotion_classifier.predict(gray_face))
        emotion_text = emotion_labels[emotion_label_arg]
        emotions[emotion_text] += 1
        if gender_text == gender_labels[0]:
            color = (0, 0, 255)
        else:
            color = (255, 0, 0)

        draw_bounding_box(face_coordinates, rgb_image, color)
        draw_text(face_coordinates, rgb_image, gender_text, color, 0, -20, 1, 2)
        draw_text(face_coordinates, rgb_image, emotion_text, color, 0, -50, 1, 2)
    max_num = 0
    max_emotion = None
    for key, value in emotions.items():
        if value > max_num:
            max_num = value
            max_emotion = key
    print("The emotion of this picture is: ", max_emotion)
    bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
    cv2.imwrite('./result_images/predicted_test_image.png', bgr_image)
    K.clear_session()
    return max_emotion
def emotion_identify(img_url):
    # parameters for loading data and images

    detection_model_path = 'C:/Users/Admin/PycharmProjects/Emotion_Detection/trained_models/detection_models/haarcascade_frontalface_default.xml'
    emotion_model_path = 'C:/Users/Admin/PycharmProjects/Emotion_Detection/trained_models/emotion_models/fer2013_mini_XCEPTION.102-0.66.hdf5'
    gender_model_path = 'C:/Users/Admin/PycharmProjects/Emotion_Detection/trained_models/gender_models/simple_CNN.81-0.96.hdf5'
    emotion_labels = get_labels('fer2013')
    gender_labels = get_labels('imdb')
    font = cv2.FONT_HERSHEY_SIMPLEX

    # hyper-parameters for bounding boxes shape
    gender_offsets = (30, 60)
    gender_offsets = (10, 10)
    emotion_offsets = (20, 40)
    emotion_offsets = (0, 0)

    # loading models
    face_detection = load_detection_model(detection_model_path)
    emotion_classifier = load_model(emotion_model_path, compile=False)
    gender_classifier = load_model(gender_model_path, compile=False)

    # getting input model shapes for inference
    emotion_target_size = emotion_classifier.input_shape[1:3]
    gender_target_size = gender_classifier.input_shape[1:3]
    # loading images
    image_path = img_url
    rgb_image = load_image(image_path, grayscale=False)
    gray_image = load_image(image_path, grayscale=True)
    gray_image = np.squeeze(gray_image)
    gray_image = gray_image.astype('uint8')

    faces = detect_faces(face_detection, gray_image)
    if len(faces) == 0:
        print("No face")
        K.clear_session()
        return False

    emotions = collections.defaultdict(int)
    for face_coordinates in faces:
        x1, x2, y1, y2 = apply_offsets(face_coordinates, gender_offsets)
        rgb_face = rgb_image[y1:y2, x1:x2]

        x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
        gray_face = gray_image[y1:y2, x1:x2]

        try:
            rgb_face = cv2.resize(rgb_face, (gender_target_size))
            gray_face = cv2.resize(gray_face, (emotion_target_size))
        except:
            continue

        rgb_face = preprocess_input(rgb_face, False)
        rgb_face = np.expand_dims(rgb_face, 0)
        gender_prediction = gender_classifier.predict(rgb_face)
        gender_label_arg = np.argmax(gender_prediction)
        gender_text = gender_labels[gender_label_arg]

        gray_face = preprocess_input(gray_face, True)
        gray_face = np.expand_dims(gray_face, 0)
        gray_face = np.expand_dims(gray_face, -1)
        emotion_label_arg = np.argmax(emotion_classifier.predict(gray_face))
        emotion_text = emotion_labels[emotion_label_arg]
        emotions[emotion_text] += 1
        if gender_text == gender_labels[0]:
            color = (0, 0, 255)
        else:
            color = (255, 0, 0)

        draw_bounding_box(face_coordinates, rgb_image, color)
        draw_text(face_coordinates, rgb_image, gender_text, color, 0, -20, 1,
                  2)
        draw_text(face_coordinates, rgb_image, emotion_text, color, 0, -50, 1,
                  2)
    max_num = 0
    max_emotion = None
    for key, value in emotions.items():
        if value > max_num:
            max_num = value
            max_emotion = key
    print("The emotion of this picture is: ", max_emotion)
    bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
    cv2.imwrite('./result_images/predicted_test_image.png', bgr_image)
    K.clear_session()
    return max_emotion
Esempio n. 16
0
    def recognize_old(self):
            #rf:[90, euqMean,'emb']
#           ,grb:[112, 'euqMean','emb']
          #,svc:[80,np.mean,'emb']
          #,lsvc:[91,meanEuq,'emb']
#           ,ada:[90,'euqMean','emb']
#           ,bag:[97,'euqMean','emb']
#           ,xtr:[51,'euqMean','emb']
        if self.rfVar.get():
            clf_dict[rf]=[90, euqMean,'emb']
        if self.grbVar.get():
            clf_dict[grb]=[112, euqMean,'emb']
        if self.adaVar.get():
            clf_dict[ada]=[90,euqMean,'emb']
        if self.bagVar.get():
            clf_dict[bag]=[97,euqMean,'emb']
        if self.xtrVar.get():
            clf_dict[xtr]=[51, euqMean,'emb']
        if self.lsvcVar.get():
            clf_dict[lsvc]=[91,meanEuq,'emb']
        if self.svcVar.get():
            clf_dict[svc]=[80,np.mean,'emb']

        dir_to_save='./crops/'

        #new_photo=detect_faces(self.path, dir_to_save)
        #cv2.imwrite(dir_to_save+os.path.basename(self.path)+'new.bmp', new_photo)
        faces=glob.glob(dir_to_save+'*'+os.path.basename(self.path)+'*')
        for image_path in faces:
            print('taking '+image_path+' into account')
            try:
                gray_image = load_image(image_path, grayscale=True)
            except:
                continue
            gray_image = np.squeeze(gray_image)
            gray_image = gray_image.astype('uint8')

            gray_face = gray_image

            gray_face = cv2.resize(gray_face, (emotion_target_size))

            try:
                gray_face = cv2.resize(gray_face, (emotion_target_size))
            except:
                print('exception ignored')

            gray_face = preprocess_input(gray_face, True)
            gray_face = np.expand_dims(gray_face, axis=0)
            gray_face = np.expand_dims(gray_face, -1)
        #     if 'fer' in layer_label:
        #         gray_face = np.expand_dims(gray_face, 0)
        #     if 'fer' not in layer_label:
        #         gray_face = np.expand_dims(gray_face, -1)
            dict_faces[str(image_path)]=emotion_classifier.predict(gray_face)
        # print(dict_faces)
        answers={'positive':0, 'neutral':1, 'negative':2}
        ans_arr=[]
        for clf in clf_dict:
            pca=pickle.load(open('best_pca_'+clf.__class__.__name__+'_n'+str(clf_dict[clf][0]),'rb'))
            vectors=[]
            for key in dict_faces.keys():
                vectors.append(dict_faces[key])
            vectors=np.reshape(vectors,(len(vectors),-1))
            print(clf.__class__.__name__)
            print(clf_dict[clf][1].__class__.__name__)
            feature_vector=clf_dict[clf][1](vectors, axis=0)
        #     print('pca_after\n')
        #     print(pca.transform(np.expand_dims(feature_vector, axis=0))[0])
        #     print('pca_before\n')
        #     print(feature_vector)
            ans_arr.append(answers[clf.predict(pca.transform(np.expand_dims(feature_vector, axis=0)))[0]])
        self.emotion_label.config(text=('Emotion: '+self.decision_make(ans_arr)).upper(), font='Times 30')
        im = Image.open(dir_to_save+os.path.basename(self.path)+'new.bmp')
        tkimage = ImageTk.PhotoImage(im)
        self.myvar.config(image = tkimage)
        self.myvar.image = tkimage
        self.myvar.pack()
Esempio n. 17
0
def recognition(f_2_s):
    #이중 조건문을 탈출하기 위해서, goto문이 불가능하다 파이썬은..
    tt = False  # 이중 조건문 탈출 위한 변수 설정
    emotion_c = ""  # 이중 조건문 탈출 위한 변수 설정

    #recap == False
    # parameters for loading data and images
    #image_path = path_r

    image_path = image_handler(f_2_s)  # 저장 여부 확인까지 완료한 뒤에 저장된 사진의 경로를 반환,받음

    # 학습된 모델과 감정labels의 경로를 설정해준 부분
    detection_model_path = '../trained_models/detection_models/haarcascade_frontalface_default.xml'
    emotion_model_path = '../trained_models/emotion_models/fer2013_mini_XCEPTION.102-0.66.hdf5'
    emotion_labels = get_labels('fer2013')
    font = cv2.FONT_HERSHEY_SIMPLEX  #폰트 --> emotion정보 보여줄 때 사용

    # hyper-parameters for bounding boxes shape
    emotion_offsets = (20, 40)
    emotion_offsets = (0, 0)

    # loading models
    face_detection = load_detection_model(detection_model_path)
    emotion_classifier = load_model(emotion_model_path, compile=False)

    # getting input model shapes for inference
    emotion_target_size = emotion_classifier.input_shape[1:3]

    # loading images
    rgb_image = load_image(image_path, grayscale=False)
    gray_image = load_image(image_path, grayscale=True)
    gray_image = np.squeeze(gray_image)
    gray_image = gray_image.astype('uint8')

    faces = detect_faces(face_detection, gray_image)
    for face_coordinates in faces:

        x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
        gray_face = gray_image[y1:y2, x1:x2]

        try:
            gray_face = cv2.resize(gray_face, (emotion_target_size))
        except:
            #pyautogui.confirm(text='one more', title='test', buttons=['ok', 'exit'])
            #recap = True
            continue

        gray_face = preprocess_input(gray_face, True)
        gray_face = np.expand_dims(gray_face, 0)
        gray_face = np.expand_dims(gray_face, -1)
        emotion_label_arg = np.argmax(emotion_classifier.predict(gray_face))
        emotion_text = ""
        emotion_text = emotion_labels[emotion_label_arg]

        #감정인식이 성공되면 감정 상태를 물어보고, 감정 확인 후 저장 or 탈출

        tof = pyautogui.confirm(text='Are you ' + emotion_text + '?',
                                title=emotion_text,
                                buttons=['yes', 'no'
                                         ])  # 인식된 감정의 정답 여부 질문, 사용자의 입력을 받음
        if (tof == 'yes'):  # 알림 창의 yes 버튼을 눌렀을 때
            tt = True  # 이중 조건문 탈출 위해

            emotion_c = emotion_text

            color = (255, 0, 0)  # 감정 정보 글씨 빨간색, 사각형도

            #draw_bounding_box(face_coordinates, rgb_image, color)
            #draw_text(face_coordinates, rgb_image, emotion_text, color, 0, -30, 1.5, 2)

        elif (tof == 'no'):  # 알림 창의 no 버튼을 눌렀을 때
            tt = False
            break

        #color = (255, 0, 0) # 감정 정보 글씨 빨간색, 사각형도

        #draw_bounding_box(face_coordinates, rgb_image, color)
        #draw_text(face_coordinates, rgb_image, emotion_text, color, 0, -30, 1.5, 2)

    if (tt == True):
        # yes 버튼을 눌렀을 때는 그 감정 여부에 맞는 파일명을 지어서 사진 저장.
        bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
        next_num = next_index(
            emotion_text)  # 인식된 감정 상태와 같은 파일들이 몇개 있는지 정보 얻고 다음 숫자가 저장됨
        cv2.imwrite('../src/' + emotion_text + 'z' + str(next_num) + '.jpg',
                    bgr_image)  #  새로운 감정 인식 사진이 생성된다.
        f = open(emotion_text + 'z' + str(next_num) + ".txt",
                 'w',
                 encoding="UTF8")  # 그에 매칭되는 일기장도 생성.
        f.close()

        # 이후 인식 된 얼굴 범위와 감정 정보를 화면을 통해 사용자에게 보여줌
        img = cv2.imread(image_path, cv2.IMREAD_COLOR)

        draw_bounding_box(face_coordinates, img, color)
        draw_text(face_coordinates, img, emotion_text, color, 0, -30, 1.5, 2)

        while (True):  # 키 입력을 기다리며 화면 정지
            cv2.imshow(image_path, img)

            if cv2.waitKey(1) > 0:
                break
        # 체크가 완료되면 함수 탈출.

        #check_recoged_img('../src/'+ emotion_text +'z'+ str(next_num) +'.jpg')    --이것은 얼굴에 사각형, 감정정보 입혀진 사진 저장

    else:  # 알림 창을 띄워서 인식 된 감정이 없다는 것을 알려줌 -->> (인식의 오류 or 사용자가 생각한 감정과의 불일치 시)
        pyautogui.alert(text='no emtion captured', title='error', button='OK')
Esempio n. 18
0
    def main_thread(self):

        if self.data_bridge.processing_chosen_by_radio_butten == 'img':
            flag=0
            detection_model_path = '../trained_models/detection_models/haarcascade_frontalface_default.xml'
            emotion_model_path = '../trained_models/emotion_models/fer2013_mini_XCEPTION.102-0.66.hdf5'
            gender_model_path = '../trained_models/gender_models/simple_CNN.81-0.96.hdf5'
            emotion_labels = get_labels('fer2013')
            gender_labels = get_labels('imdb')
            face_detection = load_detection_model(detection_model_path)
            emotion_classifier = load_model(emotion_model_path, compile=False)
            gender_classifier = load_model(gender_model_path, compile=False)
            emotion_target_size = emotion_classifier.input_shape[1:3]
            gender_target_size = gender_classifier.input_shape[1:3]

            while self.data_bridge.start_process_manager and flag==0:
                flag=1
                image_path = self.data_bridge.selected_video_file_path
                font = cv2.FONT_HERSHEY_SIMPLEX

                # hyper-parameters for bounding boxes shape
                gender_offsets = (30, 60)
                gender_offsets = (10, 10)
                emotion_offsets = (20, 40)
                emotion_offsets = (0, 0)

                rgb_image = load_image(image_path, grayscale=False)
                gray_image = load_image(image_path, grayscale=True)
                gray_image = np.squeeze(gray_image)
                gray_image = gray_image.astype('uint8')

                faces = detect_faces(face_detection, gray_image)
                for face_coordinates in faces:
                    x1, x2, y1, y2 = apply_offsets(face_coordinates, gender_offsets)
                    rgb_face = rgb_image[y1:y2, x1:x2]
                    x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
                    gray_face = gray_image[y1:y2, x1:x2]
                    try:
                        rgb_face = cv2.resize(rgb_face, (gender_target_size))
                        gray_face = cv2.resize(gray_face, (emotion_target_size))
                    except:
                        continue
                    rgb_face = preprocess_input(rgb_face, False)
                    rgb_face = np.expand_dims(rgb_face, 0)
                    gender_prediction = gender_classifier.predict(rgb_face)
                    gender_label_arg = np.argmax(gender_prediction)
                    gender_text = gender_labels[gender_label_arg]
                    gray_face = preprocess_input(gray_face, True)
                    gray_face = np.expand_dims(gray_face, 0)
                    gray_face = np.expand_dims(gray_face, -1)
                    emotion_label_arg = np.argmax(emotion_classifier.predict(gray_face))
                    emotion_text = emotion_labels[emotion_label_arg]
                    if gender_text == gender_labels[0]:
                        color = (0, 0, 255)
                    else:
                        color = (255, 0, 0)
                    draw_bounding_box(face_coordinates, rgb_image, color)
                    draw_text(face_coordinates, rgb_image, gender_text, color, 0, -20, 1, 2)
                    draw_text(face_coordinates, rgb_image, emotion_text, color, 0, -50, 1, 2)


                bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
                cv2.imwrite('../images/predicted_test_image.png', bgr_image)

                print("File has been stored in Images folder")
                print("Press stop processing to exit")
                self.gui_root.update()


        if( (self.data_bridge.processing_chosen_by_radio_butten == 'vid') or (self.data_bridge.processing_chosen_by_radio_butten=='web')):
            detection_model_path = '../trained_models/detection_models/haarcascade_frontalface_default.xml'
            emotion_model_path = '../trained_models/emotion_models/fer2013_mini_XCEPTION.102-0.66.hdf5'
            gender_model_path = '../trained_models/gender_models/simple_CNN.81-0.96.hdf5'
            emotion_labels = get_labels('fer2013')
            gender_labels = get_labels('imdb')
            # Models
            face_detection = load_detection_model(detection_model_path)
            emotion_classifier = load_model(emotion_model_path, compile=False)
            gender_classifier = load_model(gender_model_path, compile=False)
            emotion_target_size = emotion_classifier.input_shape[1:3]
            gender_target_size = gender_classifier.input_shape[1:3]

            while self.data_bridge.start_process_manager:
                font = cv2.FONT_HERSHEY_SIMPLEX
                frame_window = 10
                gender_offsets = (30, 60)
                emotion_offsets = (20, 40)
                gender_window = []
                emotion_window = []
                # starting video streaming
                cv2.namedWindow('Window_frame')
                if self.data_bridge.processing_chosen_by_radio_butten=='vid':
                    self.cap=cv2.VideoCapture(self.data_bridge.selected_video_file_path)
                else:
                    self.cap = cv2.VideoCapture(0)
                fourcc = cv2.VideoWriter_fourcc(*'XVID')
                out = cv2.VideoWriter('Save.avi', fourcc, 20.0, (720, 480))
                while self.data_bridge.start_process_manager:
                    ret, bgr_image = self.cap.read()
                    gray_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2GRAY)
                    rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB)
                    faces = detect_faces(face_detection, gray_image)

                    for face_coordinates in faces:

                        x1, x2, y1, y2 = apply_offsets(face_coordinates, gender_offsets)
                        rgb_face = rgb_image[y1:y2, x1:x2]

                        x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
                        gray_face = gray_image[y1:y2, x1:x2]
                        try:
                            rgb_face = cv2.resize(rgb_face, (gender_target_size))
                            gray_face = cv2.resize(gray_face, (emotion_target_size))
                        except:
                            continue
                        gray_face = preprocess_input(gray_face, False)
                        gray_face = np.expand_dims(gray_face, 0)
                        gray_face = np.expand_dims(gray_face, -1)
                        emotion_label_arg = np.argmax(emotion_classifier.predict(gray_face))
                        emotion_text = emotion_labels[emotion_label_arg]
                        emotion_window.append(emotion_text)

                        rgb_face = np.expand_dims(rgb_face, 0)
                        rgb_face = preprocess_input(rgb_face, False)
                        gender_prediction = gender_classifier.predict(rgb_face)
                        gender_label_arg = np.argmax(gender_prediction)
                        gender_text = gender_labels[gender_label_arg]
                        gender_window.append(gender_text)

                        if len(gender_window) > frame_window:
                            emotion_window.pop(0)
                            gender_window.pop(0)
                        try:
                            emotion_mode = mode(emotion_window)
                            gender_mode = mode(gender_window)
                        except:
                            continue

                        if gender_text == gender_labels[0]:
                            color = (0, 0, 0)
                        else:
                            color = (0, 0, 0)

                        draw_bounding_box(face_coordinates, rgb_image, color)
                        draw_text(face_coordinates, rgb_image, gender_mode,
                                  color, 0, -20, 1, 1)
                        draw_text(face_coordinates, rgb_image, emotion_mode,
                                  color, 0, -45, 1, 1)

                    bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
                    cv2.imshow('Window_frame', bgr_image)
                    self.gui_root.update()
                self.cap.release()
                cv2.destroyAllWindows()
Esempio n. 19
0
for row in csv.DictReader(data):
    value = str(row['Usage'])
    if value == 'PrivateTest':
        emotion = int(row['emotion'])
        labels_Pritest.append(emotion)

# garbage collection
gc.collect()

# loading images
test_img = np.zeros((len(labels_Pritest), 96, 96))
j = count = 0
show = []
for i in os.listdir(img_fold_path):
    test = np.squeeze(
        load_image(os.path.join(img_fold_path, i),
                   grayscale=True)).astype('uint8')
    faces = detect_faces(face_detection, test)
    for face_coordinates in faces:
        x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
        test2 = test[x1:x2, y1:y2]

    try:
        test2 = transform.resize(test2, emotion_target_size)
    except:
        continue
    test2 = np.expand_dims(test2, 0)
    test2 = np.expand_dims(test2, -1)
    emotion_label_arg = np.argmax(emotion_classifier.predict(test2))
    if labels_Pritest[j] == emotion_label_arg:
        show.append(j)
        test_img[count] = test
Esempio n. 20
0
def getFaceEmotion(image_path):
    # parameters for loading data and images
    #image_path = sys.argv[1]
    base = '/Users/macbookair/desktop/ms/project/components/emotion-classification'
    #base = '/Users/macbookair/desktop/MS/Project/components/emotion-classification';
    detection_model_path = base + '/trained_models/detection_models/haarcascade_frontalface_default.xml'
    emotion_model_path = base + '/trained_models/emotion_models/fer2013_mini_XCEPTION.102-0.66.hdf5'
    gender_model_path = base + '/trained_models/gender_models/simple_CNN.81-0.96.hdf5'
    emotion_labels = get_labels('fer2013')
    gender_labels = get_labels('imdb')
    font = cv2.FONT_HERSHEY_SIMPLEX

    # hyper-parameters for bounding boxes shape
    gender_offsets = (30, 60)
    gender_offsets = (10, 10)
    emotion_offsets = (20, 40)
    emotion_offsets = (0, 0)

    # loading models
    face_detection = load_detection_model(detection_model_path)
    emotion_classifier = load_model(emotion_model_path, compile=False)
    gender_classifier = load_model(gender_model_path, compile=False)

    # getting input model shapes for inference
    emotion_target_size = emotion_classifier.input_shape[1:3]
    gender_target_size = gender_classifier.input_shape[1:3]

    # loading images
    rgb_image = load_image(image_path, grayscale=False)
    gray_image = load_image(image_path, grayscale=True)
    gray_image = np.squeeze(gray_image)
    gray_image = gray_image.astype('uint8')

    faces = detect_faces(face_detection, gray_image)
    for face_coordinates in faces:
        x1, x2, y1, y2 = apply_offsets(face_coordinates, gender_offsets)
        rgb_face = rgb_image[y1:y2, x1:x2]

        x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
        gray_face = gray_image[y1:y2, x1:x2]

        try:
            rgb_face = cv2.resize(rgb_face, (gender_target_size))
            gray_face = cv2.resize(gray_face, (emotion_target_size))
        except:
            continue

        rgb_face = preprocess_input(rgb_face, False)
        rgb_face = np.expand_dims(rgb_face, 0)
        gender_prediction = gender_classifier.predict(rgb_face)
        gender_label_arg = np.argmax(gender_prediction)
        gender_text = gender_labels[gender_label_arg]

        gray_face = preprocess_input(gray_face, True)
        gray_face = np.expand_dims(gray_face, 0)
        gray_face = np.expand_dims(gray_face, -1)
        emotion_label_arg = np.argmax(emotion_classifier.predict(gray_face))
        emotion_text = emotion_labels[emotion_label_arg]

        if gender_text == gender_labels[0]:
            color = (0, 0, 255)
        else:
            color = (255, 0, 0)

        draw_bounding_box(face_coordinates, rgb_image, color)
        draw_text(face_coordinates, rgb_image, gender_text, color, 0, -20, 1,
                  2)
        draw_text(face_coordinates, rgb_image, emotion_text, color, 0, -50, 1,
                  2)

    print(gender_text)
    print(emotion_text)
    bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
    cv2.imwrite('predicted_test_image.png', bgr_image)
    return emotion_text
def get_sim_percent(image_1, image_2, target_class):

    # parameters for loading data and images
    # image_path = sys.argv[1]
    detection_model_path = 'trained_models/detection_models/haarcascade_frontalface_default.xml'
    emotion_model_path = 'trained_models/fer2013_big_XCEPTION.54-0.66.hdf5'
    gender_model_path = 'trained_models/gender_models/simple_CNN.81-0.96.hdf5'
    emotion_labels = get_labels('fer2013')
    gender_labels = get_labels('imdb')
    font = cv2.FONT_HERSHEY_SIMPLEX

    # hyper-parameters for bounding boxes shape
    gender_offsets = (20, 40)
    gender_offsets = (10, 10)
    emotion_offsets = (10, 30)
    emotion_offsets = (0, 0)

    # loading models
    face_detection = load_detection_model(detection_model_path)
    emotion_classifier = load_model(emotion_model_path, compile=False)
    gender_classifier = load_model(gender_model_path, compile=False)

    # getting input model shapes for inference
    emotion_target_size = emotion_classifier.input_shape[1:3]
    gender_target_size = gender_classifier.input_shape[1:3]

    target_emo = target_class

    image_path = image_1
    # loading images
    rgb_image = load_image(image_path, grayscale=False)
    gray_image = load_image(image_path, grayscale=True)
    gray_image = np.squeeze(gray_image)
    gray_image = gray_image.astype('uint8')

    faces = detect_faces(face_detection, gray_image)
    for face_coordinates in faces:
        x1, x2, y1, y2 = apply_offsets(face_coordinates, gender_offsets)
        rgb_face = rgb_image[y1:y2, x1:x2]

        x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
        gray_face = gray_image[y1:y2, x1:x2]

        try:
            rgb_face = cv2.resize(rgb_face, (gender_target_size))
            gray_face = cv2.resize(gray_face, (emotion_target_size))
        except:
            continue

        rgb_face = preprocess_input(rgb_face, False)
        rgb_face = np.expand_dims(rgb_face, 0)
        gender_prediction = gender_classifier.predict(rgb_face)
        gender_label_arg = np.argmax(gender_prediction)
        gender_text = gender_labels[gender_label_arg]

        gray_face = preprocess_input(gray_face, True)
        gray_face = np.expand_dims(gray_face, 0)
        gray_face = np.expand_dims(gray_face, -1)
        emotion_label_arg = emotion_classifier.predict(gray_face)[0][target_emo]
        emotion_percent = str(round(emotion_label_arg*100, 2))
        emotion_text = emotion_labels[target_emo] + ' - '+ emotion_percent
        # print(target_emo)
        # print(emotion_text)

        if gender_text == gender_labels[0]:
            color = (0, 0, 255)
        else:
            color = (255, 0, 0)

        draw_bounding_box(face_coordinates, rgb_image, color)
        draw_text(face_coordinates, rgb_image, gender_text, color, -20, 30, 1, 2)
        draw_text(face_coordinates, rgb_image, emotion_text, color, 0, 0, 1, 2)

    bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
    cv2.imwrite('predicted_test_image.png', bgr_image)

    return emotion_percent
Esempio n. 22
0
gender_offsets = (30, 60)
gender_offsets = (10, 10)
emotion_offsets = (20, 40)
emotion_offsets = (0, 0)

# loading models
face_detection = load_detection_model(detection_model_path)
emotion_classifier = load_model(emotion_model_path, compile=False)
gender_classifier = load_model(gender_model_path, compile=False)

# getting input model shapes for inference
emotion_target_size = emotion_classifier.input_shape[1:3]
gender_target_size = gender_classifier.input_shape[1:3]

# loading images
rgb_image = load_image(image_path, color_mode="rgb")
gray_image = load_image(image_path, color_mode="grayscale")
gray_image = np.squeeze(gray_image)
gray_image = gray_image.astype('uint8')

faces = detect_faces(face_detection, gray_image)
for face_coordinates in faces:
    x1, x2, y1, y2 = apply_offsets(face_coordinates, gender_offsets)
    rgb_face = rgb_image[y1:y2, x1:x2]

    x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
    gray_face = gray_image[y1:y2, x1:x2]

    try:
        rgb_face = cv2.resize(rgb_face, (gender_target_size))
        gray_face = cv2.resize(gray_face, (emotion_target_size))
Esempio n. 23
0
def exe_c(path):
    image_path = path                                  #!!!获取图片路径的赋值到image_path

    # parameters for loading data and images                    加载数据和图片的参数
        #sys.argv[1]
    img_i=1
    detection_model_path = '../trained_models/detection_models/haarcascade_frontalface_default.xml'
    emotion_model_path = '../trained_models/emotion_models/fer2013_mini_XCEPTION.102-0.66.hdf5'
    gender_model_path = '../trained_models/gender_models/simple_CNN.81-0.96.hdf5'
    emotion_labels = get_labels('fer2013')
    gender_labels = get_labels('imdb')
    font = cv2.FONT_HERSHEY_SIMPLEX

    # hyper-parameters for bounding boxes shape                     边框大小——的超参数
    #gender_offsets = (18, 25)
    gender_offsets = (10, 10)
    #emotion_offsets = (18, 25)
    emotion_offsets = (0, 0)

    # loading models                                                加载模型__face_detection,emotion_classifier,gender_classifier
    face_detection = load_detection_model(detection_model_path)
    emotion_classifier = load_model(emotion_model_path, compile=False)
    gender_classifier = load_model(gender_model_path, compile=False)

    # getting input model shapes for inference                      获取输入模型的引用
    emotion_target_size = emotion_classifier.input_shape[1:3]
    gender_target_size = gender_classifier.input_shape[1:3]

    # loading images                                                 加载图片
    rgb_image = load_image(image_path, grayscale=False)
    gray_image = load_image(image_path, grayscale=True)
    gray_image = np.squeeze(gray_image)
    gray_image = gray_image.astype('uint8')

    faces = detect_faces(face_detection, gray_image)                 #检测脸(face_detection,灰度图像?)

    Jsons = []
    for inx, face_coordinates in enumerate(faces):                   #enumerate 循环获取出inx值
        x1, x2, y1, y2 = apply_offsets(face_coordinates, gender_offsets)
        rgb_face = rgb_image[y1:y2, x1:x2]

        x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
        gray_face = gray_image[y1:y2, x1:x2]

        try:
            rgb_face = cv2.resize(rgb_face, (gender_target_size))
            gray_face = cv2.resize(gray_face, (emotion_target_size))
        except:
            continue

        rgb_face = preprocess_input(rgb_face, False)
        rgb_face = np.expand_dims(rgb_face, 0)
        gender_prediction = gender_classifier.predict(rgb_face)
        gender_label_arg = np.argmax(gender_prediction)
        gender_text = gender_labels[gender_label_arg]

        #jsonp['gender_text'] = gender_text                           #添加jsonp的gender标签

        gray_face = preprocess_input(gray_face, True)
        gray_face = np.expand_dims(gray_face, 0)
        gray_face = np.expand_dims(gray_face, -1)
        emotion_label_arg = np.argmax(emotion_classifier.predict(gray_face))
        emotion_text = emotion_labels[emotion_label_arg]

       # jsonp['emotion_text'] = emotion_text                        #添加jsonp的emotion标签

        if gender_text == gender_labels[0]:
            color = (0, 0, 255)
        else:
            color = (255, 0, 0)

        draw_bounding_box(face_coordinates, rgb_image, color)
        draw_text(face_coordinates, rgb_image, gender_text, color, 0, -20, 1, 2)
        draw_text(face_coordinates, rgb_image, emotion_text, color, 0, -50, 1, 2)

        #以下是bound列表转换成字典的方法
        bound_key=['x','y','w','h']
        c_x,c_y,c_w,c_h=face_coordinates
        bound_xy=[str(c_x),str(c_y),str(c_w),str(c_h)]
        bound_box = dict(zip(bound_key, bound_xy))
        print(gender_text)

        Jsons.append({'person':inx,"gender":gender_text,"emotion":emotion_text,'bound_box':bound_box})     #循环添加jsonp字典到jsons列表
    bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
    img_i+=1
    cv2.imwrite('../images/upload/result/predict_img'+str(img_i)+'.png', bgr_image)             #将opencv2写出图像到指定路径

        #{'gender':gender_text,'emotion':emotion_text}
    return Jsons
Esempio n. 24
0
def recognition(f_2_s):
    tt = False  #이중 조건문을 탈출하기 위해서, goto문이 불가능하다 파이썬은..
    emotion_c = ""
    #recap == False
    # parameters for loading data and images
    #image_path = path_r
    image_path = image_handler(f_2_s)
    detection_model_path = '../trained_models/detection_models/haarcascade_frontalface_default.xml'
    emotion_model_path = '../trained_models/emotion_models/fer2013_mini_XCEPTION.102-0.66.hdf5'
    emotion_labels = get_labels('fer2013')
    font = cv2.FONT_HERSHEY_SIMPLEX

    # hyper-parameters for bounding boxes shape
    emotion_offsets = (20, 40)
    emotion_offsets = (0, 0)

    # loading models
    face_detection = load_detection_model(detection_model_path)
    emotion_classifier = load_model(emotion_model_path, compile=False)

    # getting input model shapes for inference
    emotion_target_size = emotion_classifier.input_shape[1:3]

    # loading images
    rgb_image = load_image(image_path, grayscale=False)
    gray_image = load_image(image_path, grayscale=True)
    gray_image = np.squeeze(gray_image)
    gray_image = gray_image.astype('uint8')

    faces = detect_faces(face_detection, gray_image)
    for face_coordinates in faces:

        x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
        gray_face = gray_image[y1:y2, x1:x2]

        try:
            gray_face = cv2.resize(gray_face, (emotion_target_size))
        except:
            #pyautogui.confirm(text='one more', title='test', buttons=['ok', 'exit'])
            #recap = True
            continue

        gray_face = preprocess_input(gray_face, True)
        gray_face = np.expand_dims(gray_face, 0)
        gray_face = np.expand_dims(gray_face, -1)
        emotion_label_arg = np.argmax(emotion_classifier.predict(gray_face))
        emotion_text = ""
        emotion_text = emotion_labels[emotion_label_arg]

        #감정인식이 성공되면 감정 상태를 물어보고, 감정 확인 후 저장 or 탈출

        tof = pyautogui.confirm(text='Are you ' + emotion_text + '?',
                                title=emotion_text,
                                buttons=['yes', 'no'])
        if (tof == 'yes'):
            tt = True

            emotion_c = emotion_text

            color = (255, 0, 0)  # 감정 정보 글씨 빨간색, 사각형도

            draw_bounding_box(face_coordinates, rgb_image, color)
            draw_text(face_coordinates, rgb_image, emotion_text, color, 0, -30,
                      1.5, 2)
        elif (tof == 'no'):
            tt = False
            break

        #color = (255, 0, 0) # 감정 정보 글씨 빨간색, 사각형도

        #draw_bounding_box(face_coordinates, rgb_image, color)
        #draw_text(face_coordinates, rgb_image, emotion_text, color, 0, -30, 1.5, 2)
    if (tt == True):
        bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
        cv2.imwrite('../src/' + emotion_text + '.jpg', bgr_image)  # 변수 활용
        check_recoged_img('../src/' + emotion_text + '.jpg')
    else:
        pyautogui.alert(text='no emtion captured', title='error', button='OK')
Esempio n. 25
0
def main():

    protoFile = "C:\\Users\\asus\\Documents\\major_project\\Project\\openpose-master\\openpose-master\\models\\pose\\coco\\pose_deploy_linevec.prototxt"
    weightsFile = "C:\\Users\\asus\\Documents\\major_project\\Project\\openpose-master\\openpose-master\\models\\pose\\coco\\pose_iter_440000.caffemodel"
    nPoints = 18
    # COCO Output Format
    keypointsMapping = [
        'Nose', 'Neck', 'R-Sho', 'R-Elb', 'R-Wr', 'L-Sho', 'L-Elb', 'L-Wr',
        'R-Hip', 'R-Knee', 'R-Ank', 'L-Hip', 'L-Knee', 'L-Ank', 'R-Eye',
        'L-Eye', 'R-Ear', 'L-Ear'
    ]

    POSE_PAIRS = [[1, 2], [1, 5], [2, 3], [3, 4], [5, 6], [6, 7], [1,
                                                                   8], [8, 9],
                  [9, 10], [1, 11], [11, 12], [12, 13], [1, 0], [0, 14],
                  [14, 16], [0, 15], [15, 17], [2, 17], [5, 16]]

    # index of pafs correspoding to the POSE_PAIRS
    # e.g for POSE_PAIR(1,2), the PAFs are located at indices (31,32) of output, Similarly, (1,5) -> (39,40) and so on.
    mapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44],
              [19, 20], [21, 22], [23, 24], [25, 26], [27, 28], [29, 30],
              [47, 48], [49, 50], [53, 54], [51, 52], [55, 56], [37, 38],
              [45, 46]]

    colors = [[0, 100, 255], [0, 100, 255], [0, 255, 255], [0, 100, 255],
              [0, 255, 255], [0, 100, 255], [0, 255, 0], [255, 200, 100],
              [255, 0, 255], [0, 255, 0], [255, 200, 100], [255, 0, 255],
              [0, 0, 255], [255, 0, 0], [200, 200, 0], [255, 0, 0],
              [200, 200, 0], [0, 0, 0]]

    detection_model_path = 'C:\\Users\\asus\\Documents\\major_project\\Project\\face_classification-master\\face_classification-master\\trained_models\\detection_models\\haarcascade_frontalface_default.xml'
    emotion_model_path = 'C:\\Users\\asus\\Documents\\major_project\\Project\\face_classification-master\\face_classification-master\\trained_models\\emotion_models\\fer2013_mini_XCEPTION.102-0.66.hdf5'
    emotion_labels = get_labels('fer2013')
    font = cv2.FONT_HERSHEY_SIMPLEX
    # hyper-parameters for bounding boxes shape
    emotion_offsets = (20, 40)
    emotion_offsets = (0, 0)
    # loading models
    face_detection = load_detection_model(detection_model_path)
    emotion_classifier = load_model(emotion_model_path, compile=False)
    # getting input model shapes for inference
    emotion_target_size = emotion_classifier.input_shape[1:3]

    while True:
        poll()
        print(image_queue)
        # parameters for loading data and images
        image_name = image_queue.get()[0]
        print(image_name)
        image_path = get_image(image_name)  #sys.argv[1]

        # loading images
        rgb_image = load_image(image_path, grayscale=False)
        gray_image = load_image(image_path, grayscale=True)
        gray_image = np.squeeze(gray_image)
        gray_image = gray_image.astype('uint8')

        faces = detect_faces(face_detection, gray_image)
        cat_count = {
            'angry': 0,
            'disgust': 0,
            'fear': 0,
            'happy': 0,
            'sad': 0,
            'surprise': 0,
            'neutral': 0
        }
        total_count = 0
        for face_coordinates in faces:
            x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
            gray_face = gray_image[y1:y2, x1:x2]

            try:
                gray_face = cv2.resize(gray_face, (emotion_target_size))
            except:
                continue

            gray_face = preprocess_input(gray_face, True)
            gray_face = np.expand_dims(gray_face, 0)
            gray_face = np.expand_dims(gray_face, -1)
            emotion_label_arg = np.argmax(
                emotion_classifier.predict(gray_face))
            emotion_text = emotion_labels[emotion_label_arg]
            cat_count[emotion_text] = cat_count[emotion_text] + 1
            total_count = total_count + 1
            color = (255, 0, 0)
            draw_bounding_box(face_coordinates, rgb_image, color)
            draw_text(face_coordinates, rgb_image, emotion_text, color, 0, -50,
                      1, 2)
        cv2.imwrite("../pose_images/" + image_name, rgb_image)
        upload_file("../pose_images/" + image_name,
                    'major-project-processed-images', image_name)

        connection = pymysql.connect(host,
                                     user=user,
                                     port=port,
                                     passwd=password,
                                     db=dbname)
        cursor = connection.cursor()
        cursor.execute(
            '''INSERT INTO `expressions`(`name`, `happy`, `angry`, `sad`, `suprised`, `fear`,`neutral`,`disgust`,`total`)
                        VALUES (%s,
                                %s,
                                %s,
                                %s,
                                %s,
                                %s,
                                %s,
                                %s,
                                %s)''',
            (image_name, cat_count['happy'], cat_count['angry'],
             cat_count['sad'], cat_count['surprise'], cat_count['fear'],
             cat_count['neutral'], cat_count['disgust'], total_count))
        cursor.execute("commit")
        #bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
        #cv2.imwrite('../images/predicted_test_image.png', bgr_image)

        #pose estimation code........
        image1 = cv2.imread(image_path)
        frameWidth = image1.shape[1]
        frameHeight = image1.shape[0]
        #t = time.time()
        net = cv2.dnn.readNetFromCaffe(protoFile, weightsFile)

        # Fix the input Height and get the width according to the Aspect Ratio
        inHeight = 368
        inWidth = int((inHeight / frameHeight) * frameWidth)

        inpBlob = cv2.dnn.blobFromImage(image1,
                                        1.0 / 255, (inWidth, inHeight),
                                        (0, 0, 0),
                                        swapRB=False,
                                        crop=False)

        net.setInput(inpBlob)
        output = net.forward()
        #print("Time Taken in forward pass = {}".format(time.time() - t))

        detected_keypoints = []
        keypoints_list = np.zeros((0, 3))
        keypoint_id = 0
        threshold = 0.1
        keypoint_location = {}
        for part in range(nPoints):
            probMap = output[0, part, :, :]
            probMap = cv2.resize(probMap, (image1.shape[1], image1.shape[0]))
            keypoints = getKeypoints(probMap, threshold)
            print("Keypoints - {} : {}".format(keypointsMapping[part],
                                               keypoints))
            keypoints_with_id = []
            for i in range(len(keypoints)):
                keypoints_with_id.append(keypoints[i] + (keypoint_id, ))
                keypoints_list = np.vstack([keypoints_list, keypoints[i]])
                keypoint_location[keypoint_id] = keypoints[i]
                keypoint_id += 1
            detected_keypoints.append(keypoints_with_id)

        frameClone = image1.copy()
        for i in range(nPoints):
            for j in range(len(detected_keypoints[i])):
                cv2.circle(frameClone, detected_keypoints[i][j][0:2], 5,
                           colors[i], -1, cv2.LINE_AA)
                #cv2.imshow("Keypoints",frameClone)

        valid_pairs, invalid_pairs = getValidPairs(output, frameWidth,
                                                   frameHeight, mapIdx,
                                                   detected_keypoints,
                                                   POSE_PAIRS)
        personwiseKeypoints = getPersonwiseKeypoints(valid_pairs,
                                                     invalid_pairs,
                                                     keypoints_list, mapIdx,
                                                     POSE_PAIRS)
        for i in range(17):
            for n in range(len(personwiseKeypoints)):
                index = personwiseKeypoints[n][np.array(POSE_PAIRS[i])]
                if -1 in index:
                    continue
                B = np.int32(keypoints_list[index.astype(int), 0])
                A = np.int32(keypoints_list[index.astype(int), 1])
                cv2.line(frameClone, (B[0], A[0]), (B[1], A[1]), colors[i], 3,
                         cv2.LINE_AA)
        cv2.imwrite("../pose_images/image0.jpg", frameClone)
        class_status = classStatus(personwiseKeypoints, keypoint_location)
        print(class_status)
        cursor.execute(
            '''INSERT INTO `gestures`(`name`,`left_turned`, `right_turned`, `back_turned`, `raised_hands`, `total`)
                        VALUES (%s,
                                %s,
                                %s,
                                %s,
                                %s,
                                %s
                                )''',
            (image_name, class_status['turnedleft'],
             class_status['turnedright'], class_status['turnedback'],
             class_status['raisedhands'], class_status['classtotal']))
        cursor.execute("commit")
        #end of pose estimation code......................
        cursor.execute(
            ''' UPDATE `images` SET `isprocessed`=1 WHERE `name`=%s''',
            (image_name))
        cursor.execute("commit")

        cursor.close()
        connection.close()
Esempio n. 26
0
def predict(image_folder_path, emotion_kind):

    detection_model_path = '../trained_models/detection_models/haarcascade_frontalface_default.xml'
    emotion_model_path = '../trained_models/emotion_models/fer2013_mini_XCEPTION.102-0.66.hdf5'
    gender_model_path = '../trained_models/gender_models/simple_CNN.81-0.96.hdf5'
    emotion_labels = get_labels('fer2013')

    target_file = '../result/predicted_' + EmotionName[emotion_kind] + '.txt'

    gender_labels = get_labels('imdb')
    font = cv2.FONT_HERSHEY_SIMPLEX

    # hyper-parameters for bounding boxes shape
    gender_offsets = (30, 60)
    gender_offsets = (10, 10)
    emotion_offsets = (20, 40)
    emotion_offsets = (0, 0)

    # loading models
    face_detection = load_detection_model(detection_model_path)
    emotion_classifier = load_model(emotion_model_path, compile=False)
    gender_classifier = load_model(gender_model_path, compile=False)

    # getting input model shapes for inference
    emotion_target_size = emotion_classifier.input_shape[1:3]
    gender_target_size = gender_classifier.input_shape[1:3]

    image_path = dir_data_folder(image_folder_path)

    predicted_label = []

    for num in range(len(image_path)):
        # print the process info
        if print_switch == 0:
            print('deal with the ' + image_path[num])

        # loading images
        rgb_image = load_image(image_path[num], grayscale=False)
        gray_image = load_image(image_path[num], grayscale=True)
        gray_image = np.squeeze(gray_image)
        gray_image = gray_image.astype('uint8')

        # pdb.set_trace()

        faces = detect_faces(face_detection, gray_image)
        emotion_label_arg = -1
        for face_coordinates in faces:
            x1, x2, y1, y2 = apply_offsets(face_coordinates, gender_offsets)
            rgb_face = rgb_image[y1:y2, x1:x2]

            x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
            gray_face = gray_image[y1:y2, x1:x2]

            try:
                rgb_face = cv2.resize(rgb_face, (gender_target_size))
                gray_face = cv2.resize(gray_face, (emotion_target_size))
            except:
                continue

            rgb_face = preprocess_input(rgb_face, False)
            rgb_face = np.expand_dims(rgb_face, 0)
            gender_prediction = gender_classifier.predict(rgb_face)
            gender_label_arg = np.argmax(gender_prediction)
            gender_text = gender_labels[gender_label_arg]

            gray_face = preprocess_input(gray_face, True)
            gray_face = np.expand_dims(gray_face, 0)
            gray_face = np.expand_dims(gray_face, -1)
            emotion_label_arg = np.argmax(
                emotion_classifier.predict(gray_face))
            emotion_text = emotion_labels[emotion_label_arg]

            if single_set_draw_switch == 0:
                if gender_text == gender_labels[0]:
                    color = (0, 0, 255)
                else:
                    color = (255, 0, 0)

                draw_bounding_box(face_coordinates, rgb_image, color)
                # draw_text(face_coordinates, rgb_image, gender_text, color, 0, -20, 1, 2)
                draw_text(face_coordinates, rgb_image, emotion_text, color, 0,
                          20, 1, 2)

        if single_set_draw_switch == 0:
            bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)

            filename = image_path[num].split('/')[-1]
            filename = filename.split('.')[0]
            newname = '../predicted_image/' + 'predicted_' + filename + '.png'
            cv2.imwrite(newname, bgr_image)

        # add the predicted label
        predicted_label.append(emotion_label_arg)

    unrecognized_cnt = predicted_label.count(-1)
    true_cnt = predicted_label.count(emotion_kind)
    total_cnt = len(image_path)
    face_cnt = total_cnt - unrecognized_cnt
    face_recog_ratio = face_cnt / float(total_cnt)
    total_accuracy = true_cnt / float(total_cnt)
    recog_accuracy = true_cnt / float(face_cnt)

    f = open(target_file, 'w+')
    #with open(target_file,'w') as f:
    f.write(EmotionName[emotion_kind] + ' count = ' + str(true_cnt) + '\n')
    f.write(EmotionName[emotion_kind] + ' total count = ' + str(total_cnt) +
            '\n')
    f.write(EmotionName[emotion_kind] + '_accuracy in total: ' +
            str(total_accuracy) + '\n')
    f.write(EmotionName[emotion_kind] + '_accuracy in recognized: ' +
            str(recog_accuracy) + '\n')
    f.write('face_recognize_count : ' + str(face_cnt) + '\n')
    f.write('face_recognize_ratio : ' + str(face_recog_ratio) + '\n')
    for label in predicted_label:
        f.write(str(label) + '\n')
    f.close()
    return [
        true_cnt, total_cnt, face_cnt, total_accuracy, face_recog_ratio,
        recog_accuracy
    ]
Esempio n. 27
0
"""RAF_DB"""
emotion_model_path = '../trained_models/emotion_models/VGG16_Dense_RAF_20190714.h5'  # 选择加载模型
emotion_labels = [
    'Surprise', 'Fear', 'Disgust', 'Happy', 'Sad', 'Angry', 'Neutral'
]
"""FER2013"""
# emotion_labels = ['Angry', 'Disgust', 'Fear', 'Happy', 'Sad', 'Surprise', 'Neutral']
# emotion_model_path = '../trained_models/emotion_models/fer2013_vgg16_tf.h5'

isgray = False
detection_model_path = '../trained_models/detection_models/haarcascade_frontalface_default.xml'
face_detection = cv2.CascadeClassifier(detection_model_path)
emotion_classifier = load_model(emotion_model_path, compile=True)
emotion_target_size = emotion_classifier.input_shape[1:3]

rgb_image = load_image(image_path, color_mode='rgb')
gray_image = load_image(image_path, color_mode='grayscale')
if isgray:
    # gray_image = rgb2gray(rgb_image)
    gray_image = np.squeeze(gray_image)
    gray_image = gray_image.astype('uint8')
    face_image = gray_image
else:
    rgb_image = np.squeeze(rgb_image).astype('uint8')
    face_image = rgb_image

emotion_offsets = (0, 0)

# face = gray_image

faces = detect_faces(face_detection, face_image)
Esempio n. 28
0
emotion_offsets = (20, 40)
emotion_offsets = (0, 0)

# loading models
face_detection = load_detection_model()
emotion_classifier = load_model(emotion_model_path, compile=False)
gender_classifier = load_model(gender_model_path, compile=False)

# getting input model shapes for inference
emotion_target_size = emotion_classifier.input_shape[1:3]
gender_target_size = gender_classifier.input_shape[1:3]

start = time.time()

# loading images
rgb_image = load_image(image_path, grayscale=False)
gray_image = load_image(image_path, grayscale=True)
gray_image = np.squeeze(gray_image)
gray_image = gray_image.astype('uint8')

detected_faces, score, idx = detect_faces(face_detection, gray_image)

for detected_face in detected_faces:

    face_coordinates = make_face_coordinates(detected_face)

    x1, x2, y1, y2 = apply_offsets(face_coordinates, gender_offsets)
    rgb_face = rgb_image[y1:y2, x1:x2]

    x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
    gray_face = gray_image[y1:y2, x1:x2]
Esempio n. 29
0
def gender_detection(image_path):
    # parameters for loading data and images
    detection_model_path = 'C:\\Users\\l1f15bscs0049\\Desktop\\haarcascade_frontalface_default.xml'
    gender_model_path = 'C:\\Users\\l1f15bscs0049\\Desktop\\simple_CNN.81-0.96.hdf5'
    gender_labels = get_labels('imdb')
    font = cv2.FONT_HERSHEY_SIMPLEX

    # hyper-parameters for bounding boxes shape
    gender_offsets = (30, 60)
    gender_offsets = (10, 10)

    # loading models
    face_detection = load_detection_model(detection_model_path)
    gender_classifier = load_model(gender_model_path, compile=False)

    # getting input model shapes for inference
    gender_target_size = gender_classifier.input_shape[1:3]

    # loading images
    rgb_image = load_image(image_path, grayscale=False)
    gray_image = load_image(image_path, grayscale=True)
    gray_image = np.squeeze(gray_image)
    gray_image = gray_image.astype('uint8')

    #creating a file
    save_path = 'C:\\Users\\l1f15bscs0049\\Desktop'
    completeName = os.path.join(save_path, "hellojee.txt")
    file = open(completeName, "a")

    faces = detect_faces(face_detection, gray_image)
    for face_coordinates in faces:
        x1, x2, y1, y2 = apply_offsets(face_coordinates, gender_offsets)
        rgb_face = rgb_image[y1:y2, x1:x2]

        try:
            rgb_face = cv2.resize(rgb_face, (gender_target_size))

        except:
            continue

        rgb_face = preprocess_input(rgb_face, False)
        rgb_face = np.expand_dims(rgb_face, 0)
        gender_prediction = gender_classifier.predict(rgb_face)
        gender_label_arg = np.argmax(gender_prediction)
        gender_text = gender_labels[gender_label_arg]
        #print(gender_label_arg)
        file.write(str(gender_label_arg))
        file.write("\n")

        if gender_text == gender_labels[0]:
            color = (0, 0, 255)
        else:
            color = (255, 0, 0)

        draw_bounding_box(face_coordinates, rgb_image, color)
        draw_text(face_coordinates, rgb_image, gender_text, color, 0, -20, 1,
                  2)
        #print(gender_label_arg)

    bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
    #cv2.imwrite('C:\\Users\\l1f15bscs0049\\Desktop\\a.png', bgr_image)
    print('\n\tGender Detection Done')

    file.close()

    #check men women count
    from collections import Counter
    with open(completeName, "r") as f:
        cd = Counter(int(line.split(None, 1)[0]) for line in f)
    #print(cd)

    women_count = cd[0]
    men_count = cd[1]
    # print(women_count)
    #print(men_count)
    #print(cd[0])
    #print(cd[1])
    os.remove(completeName)
    print("file removed")
    #call a wrapper function
    if (women_count > men_count):
        print("Women detected")
        Wrapper_func(0)

    elif (men_count > women_count):
        print("men detected")
        Wrapper_func(1)

    else:
        print("no Detection\n Random Ad's playing\n")
        random_ads()

    file.close()