Esempio n. 1
0
def test_one_shot(args, model, test_samples=5000, partition='test'):
    io = io_utils.IOStream('checkpoints/' + args.exp_name + '/run.log')

    io.cprint('\n**** TESTING WITH %s ***' % (partition,))

    loader = generator.Generator(args.dataset_root, args, partition=partition, dataset=args.dataset)

    [enc_nn, metric_nn, softmax_module] = model
    enc_nn.eval()
    metric_nn.eval()
    correct = 0
    total = 0
    iterations = int(test_samples/args.batch_size_test)
    for i in range(iterations):
        data = loader.get_task_batch(batch_size=args.batch_size_test, n_way=args.test_N_way,
                                     num_shots=args.test_N_shots, unlabeled_extra=args.unlabeled_extra)
        [x, labels_x_cpu, _, _, xi_s, labels_yi_cpu, oracles_yi, hidden_labels] = data

        if args.cuda:
            xi_s = [batch_xi.cuda() for batch_xi in xi_s]
            labels_yi = [label_yi.cuda() for label_yi in labels_yi_cpu]
            oracles_yi = [oracle_yi.cuda() for oracle_yi in oracles_yi]
            hidden_labels = hidden_labels.cuda()
            x = x.cuda()
        else:
            labels_yi = labels_yi_cpu

        xi_s = [Variable(batch_xi) for batch_xi in xi_s]
        labels_yi = [Variable(label_yi) for label_yi in labels_yi]
        oracles_yi = [Variable(oracle_yi) for oracle_yi in oracles_yi]
        hidden_labels = Variable(hidden_labels)
        x = Variable(x)

        # Compute embedding from x and xi_s
        z = enc_nn(x)[-1]
        zi_s = [enc_nn(batch_xi)[-1] for batch_xi in xi_s]

        # Compute metric from embeddings
        output, out_logits = metric_nn(inputs=[z, zi_s, labels_yi, oracles_yi, hidden_labels])
        output = out_logits
        y_pred = softmax_module.forward(output)
        y_pred = y_pred.data.cpu().numpy()
        y_pred = np.argmax(y_pred, axis=1)
        labels_x_cpu = labels_x_cpu.numpy()
        labels_x_cpu = np.argmax(labels_x_cpu, axis=1)

        for row_i in range(y_pred.shape[0]):
            if y_pred[row_i] == labels_x_cpu[row_i]:
                correct += 1
            total += 1

        if (i+1) % 100 == 0:
            io.cprint('{} correct from {} \tAccuracy: {:.3f}%)'.format(correct, total, 100.0*correct/total))

    io.cprint('{} correct from {} \tAccuracy: {:.3f}%)'.format(correct, total, 100.0*correct/total))
    io.cprint('*** TEST FINISHED ***\n'.format(correct, total, 100.0 * correct / total))
    enc_nn.train()
    metric_nn.train()

    return 100.0 * correct / total
Esempio n. 2
0
                    help='Decreasing the learning rate every x iterations')
args = parser.parse_args()


def _init_():
    if not os.path.exists('checkpoints'):
        os.makedirs('checkpoints')
    if not os.path.exists('checkpoints/'+args.exp_name):
        os.makedirs('checkpoints/'+args.exp_name)
    if not os.path.exists('checkpoints/'+args.exp_name+'/'+'models'):
        os.makedirs('checkpoints/'+args.exp_name+'/'+'models')
    os.system('cp main.py checkpoints'+'/'+args.exp_name+'/'+'main.py.backup')
    os.system('cp models/models.py checkpoints' + '/' + args.exp_name + '/' + 'models.py.backup')
_init_()

io = io_utils.IOStream('checkpoints/' + args.exp_name + '/run.log')
io.cprint(str(args))

args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
    io.cprint('Using GPU : ' + str(torch.cuda.current_device())+' from '+str(torch.cuda.device_count())+' devices')
    torch.cuda.manual_seed(args.seed)
else:
    io.cprint('Using CPU')


def train_batch(model, data):
    [enc_nn, metric_nn, softmax_module] = model
    [batch_x, label_x, batches_xi, labels_yi, oracles_yi, hidden_labels] = data
Esempio n. 3
0
def test_one_shot(args,
                  fold,
                  test_root,
                  model,
                  test_samples=50,
                  partition='test',
                  io_path='run.log'):
    io = io_utils.IOStream(io_path)

    io.cprint('\n**** TESTING BEGIN ***')
    root = test_root
    loader = Generator(root, keys=['CN', 'MCI', 'AD'])
    [amgnn, softmax_module] = model
    amgnn.eval()
    correct = 0
    total = 0
    pre_all = []
    pre_all_num = []
    real_all = []
    iterations = int(test_samples / args.batch_size_test)
    for i in range(iterations):
        data = loader.get_task_batch(batch_size=args.batch_size_test,
                                     n_way=args.test_N_way,
                                     num_shots=args.test_N_shots,
                                     unlabeled_extra=args.unlabeled_extra,
                                     cuda=args.cuda)
        [x_t, labels_x_cpu_t, _, _, xi_s, labels_yi_cpu, oracles_yi] = data

        z_clinical, z_mri_feature = x_t[:, 0, 0, 0:args.
                                        clinical_feature_num], x_t[:, :, :,
                                                                   args.
                                                                   clinical_feature_num:]
        zi_s_clinical = [
            batch_xi[:, 0, 0, 0:args.clinical_feature_num] for batch_xi in xi_s
        ]
        zi_s_mri_feature = [
            batch_xi[:, :, :, args.clinical_feature_num:] for batch_xi in xi_s
        ]

        adj = compute_adj(z_clinical, zi_s_clinical)

        x = x_t
        labels_x_cpu = labels_x_cpu_t

        if args.cuda:
            xi_s = [batch_xi.cuda() for batch_xi in zi_s_mri_feature]
            labels_yi = [label_yi.cuda() for label_yi in labels_yi_cpu]
            oracles_yi = [oracle_yi.cuda() for oracle_yi in oracles_yi]
            x = x.cuda()
        else:
            labels_yi = labels_yi_cpu

        xi_s = [Variable(batch_xi) for batch_xi in zi_s_mri_feature]
        labels_yi = [Variable(label_yi) for label_yi in labels_yi]
        oracles_yi = [Variable(oracle_yi) for oracle_yi in oracles_yi]
        z_mri_feature = Variable(z_mri_feature)

        # Compute metric from embeddings
        output, out_logits = amgnn(inputs=[
            z_clinical, z_mri_feature, zi_s_clinical, xi_s, labels_yi,
            oracles_yi, adj
        ])
        output = out_logits
        Y = softmax_module.forward(output)
        y_pred = softmax_module.forward(output)

        y_pred = y_pred.data.cpu().numpy()
        y_inter = [list(y_i) for y_i in y_pred]
        pre_all_num = pre_all_num + list(y_inter)
        y_pred = np.argmax(y_pred, axis=1)
        labels_x_cpu = labels_x_cpu.cpu().numpy()
        labels_x_cpu = np.argmax(labels_x_cpu, axis=1)
        pre_all = pre_all + list(y_pred)
        real_all = real_all + list(labels_x_cpu)
        for row_i in range(y_pred.shape[0]):
            if y_pred[row_i] == labels_x_cpu[row_i]:
                correct += 1
            total += 1
    labels_x_cpu = Variable(torch.cuda.LongTensor(labels_x_cpu))
    loss_test = F.nll_loss(Y, labels_x_cpu)
    loss_test_f = float(loss_test)
    del loss_test
    io.cprint('real_label:  ' + str(real_all))
    io.cprint('pre_all:  ' + str(pre_all))
    io.cprint('pre_all_num:  ' + str(pre_all_num))
    io.cprint('{} correct from {} \tAccuracy: {:.3f}%)'.format(
        correct, total, 100.0 * correct / total))
    io.cprint('*** TEST FINISHED ***\n'.format(correct, total,
                                               100.0 * correct / total))

    amgnn.train()

    return 100.0 * correct / total, loss_test_f
Esempio n. 4
0
def test_one_shot(e_stop,
                  test_cycle,
                  args,
                  model,
                  test_samples=5000,
                  partition='test'):
    """Function used to perform testing (validation and final test)
    
    Parameters:
    e_stop (early_stop): early stop which monitors when we stop training
    test_cycle (int): current iteration cycle - used when creating confusion matrix file names
    args (Namespace): arguments from argparse
    model (list) : contains cnn, gnn and softmax models
    test_samples (int) : number of samples to test
    partition (string) : train, val or test 
    
    Returns:
    e_stop (early_stop) : we return the early_stop object which has been updated based upon the test
    
    """

    io = io_utils.IOStream('checkpoints/' + args.exp_name + '/run.log')

    io.cprint('\n**** TESTING WITH %s ***' % (partition, ))

    loader = generator.Generator(args.dataset_root,
                                 args,
                                 partition=partition,
                                 dataset=args.dataset)

    [enc_nn, metric_nn, softmax_module] = model
    enc_nn.eval()
    metric_nn.eval()
    correct = 0
    total = 0
    iterations = int(test_samples / args.batch_size_test)

    true_list = []
    predicted_list = []

    with open(
            os.path.join('datasets', 'compacted_datasets',
                         'sensor_label_decoder.pickle'), 'rb') as handle:
        label_decoder = pickle.load(handle)

    sep = '\\'
    for temp in range(0, len(label_decoder)):
        label_decoder[temp] = label_decoder[temp].rsplit(sep, 1)[1]

    for i in range(iterations):

        data, labels_dict = loader.get_task_batch(
            batch_size=args.batch_size_test)
        [x, labels_x_cpu, _, x_global, xi_s, labels_yi_cpu] = data

        if args.cuda:
            xi_s = [batch_xi.cuda() for batch_xi in xi_s]
            labels_yi = [label_yi.cuda() for label_yi in labels_yi_cpu]
            x = x.cuda()
        else:
            labels_yi = labels_yi_cpu

        xi_s = [Variable(batch_xi) for batch_xi in xi_s]
        labels_yi = [Variable(label_yi) for label_yi in labels_yi]
        x = Variable(x)

        # Compute embedding from x and xi_s
        z = enc_nn(x)

        zi_s = [enc_nn(batch_xi) for batch_xi in xi_s]

        # Compute metric from embeddings
        output, out_logits = metric_nn(inputs=[z, zi_s, labels_yi])
        output = out_logits

        y_pred = softmax_module.forward(output)

        y_pred = y_pred.data.cpu().numpy()
        y_pred = np.argmax(y_pred, axis=1)
        labels_x_cpu = labels_x_cpu.numpy()
        labels_x_cpu = np.argmax(labels_x_cpu, axis=1)

        for i in range(0, len(labels_x_cpu)):
            true_label = labels_dict[i, labels_x_cpu[i]]
            true_list.append(label_decoder[true_label])
            predicted_label = labels_dict[i, y_pred[i]]
            predicted_list.append(label_decoder[predicted_label])

        for row_i in range(y_pred.shape[0]):
            if y_pred[row_i] == labels_x_cpu[row_i]:
                correct += 1
            total += 1

        if (i + 1) % 100 == 0:
            io.cprint('{} correct from {} \tAccuracy: {:.3f}%)'.format(
                correct, total, 100.0 * correct / total))
    acc = accuracy_score(true_list, predicted_list)
    micro = f1_score(true_list, predicted_list, average='weighted')
    macro = f1_score(true_list, predicted_list, average='macro')

    e_stop.update(micro, enc_nn, metric_nn)

    if partition == 'test' or (partition == 'val' and e_stop.improve):
        if partition == 'test':
            test_cycle = 999

        #Print confusion matrix
        conf_mat.conf_mat(true_list, predicted_list, test_cycle, args.train,
                          args.test)

        test_labels = sorted(set(true_list).union(set(predicted_list)))

        print(
            classification_report(true_list,
                                  predicted_list,
                                  target_names=test_labels))

        print("Micro is " + str(micro))

    enc_nn.train()
    metric_nn.train()

    return e_stop
Esempio n. 5
0
    amgnn.train()

    return 100.0 * correct / total, loss_test_f


if __name__ == '__main__':
    ################################################################
    print(time.strftime("%F"))

    timedata = time.strftime("%F")
    name = timedata + '-3-classe'
    save_path = 'result\\{}'.format(name)

    if name not in os.listdir('result\\'):
        os.makedirs(save_path)
    io = io_utils.IOStream(save_path + '\\run.log')
    print('the result will be saved in :', save_path)
    setup_seed(args.random_seed)

    amgnn = models.create_models(args, cnn_dim1=2)
    io.cprint(str(amgnn))
    softmax_module = models.SoftmaxModule()
    print(amgnn.parameters())
    if args.cuda:
        amgnn.cuda()

    weight_decay = 0

    opt_amgnn = optim.Adam(amgnn.parameters(),
                           lr=args.lr,
                           weight_decay=weight_decay)