Esempio n. 1
0
 def discriminator(self, video, reuse=False):
     with tf.variable_scope('d_', reuse=reuse) as vs:
         initial_dim = 64
         """ CONV BLOCK 1 """
         d_h0 = dis_block(video, 3, initial_dim, 'block1', reuse=reuse)
         """ CONV BLOCK 2 """
         d_h1 = dis_block(d_h0,
                          initial_dim,
                          initial_dim * 2,
                          'block2',
                          reuse=reuse)
         """ CONV BLOCK 3 """
         d_h2 = dis_block(d_h1,
                          initial_dim * 2,
                          initial_dim * 4,
                          'block3',
                          reuse=reuse)
         """ CONV BLOCK 4 """
         d_h3 = dis_block(d_h2,
                          initial_dim * 4,
                          initial_dim * 8,
                          'block4',
                          reuse=reuse)
         """ CONV BLOCK 5 """
         d_h4 = dis_block(d_h3,
                          initial_dim * 8,
                          1,
                          'block5',
                          reuse=reuse,
                          normalize=False)
         """ LINEAR BLOCK """
         d_h5 = linear(tf.reshape(d_h4, [self.batch_size, -1]), 1)
     variables = tf.contrib.framework.get_variables(vs)
     return d_h5, variables
Esempio n. 2
0
 def discriminatorVid(self, video, reuse=False):
     with tf.variable_scope('disc_v', reuse=reuse) as vs:
         initial_dim = 64
         d_h0 = dis_block(video, 3, initial_dim, 'block1', reuse=reuse)
         d_h1 = dis_block(d_h0,
                          initial_dim,
                          initial_dim * 2,
                          'block2',
                          reuse=reuse)
         d_h2 = dis_block(d_h1,
                          initial_dim * 2,
                          initial_dim * 4,
                          'block3',
                          reuse=reuse)
         d_h3 = dis_block(d_h2,
                          initial_dim * 4,
                          initial_dim * 8,
                          'block4',
                          reuse=reuse)
         d_h4 = dis_block(d_h3,
                          initial_dim * 8,
                          1,
                          'block5',
                          reuse=reuse,
                          normalize=False)
         d_h5 = linear(tf.reshape(d_h4, [self.batch_size, -1]), 1)
     # variables = tf.contrib.framework.get_variables(vs)
     # return d_h5, variables
     return d_h5
Esempio n. 3
0
 def discriminator(self, video, reuse=False):
     with tf.variable_scope('d_', reuse=reuse) as vs:
         initial_dim = self.crop_size
         video = tf.reshape(video, [self.batch_size, self.frame_size, self.crop_size, self.crop_size, self.channels])
         d_h0 = dis_block(video, self.channels, initial_dim, 'block1', reuse=reuse, ddd=True)
         d_h1 = dis_block(d_h0, initial_dim, initial_dim * 2, 'block2', reuse=reuse, ddd=True)
         d_h2 = dis_block(d_h1, initial_dim * 2, initial_dim * 4, 'block3', reuse=reuse, ddd=True)
         d_h3 = dis_block(d_h2, initial_dim * 4, initial_dim * 8, 'block4', reuse=reuse, ddd=True)
         d_h4 = dis_block(d_h3, initial_dim * 8, 1, 'block5', reuse=reuse, normalize=False, ddd=True)
         d_h5 = linear(tf.reshape(d_h4, [self.batch_size, -1]), 1)
     variables = tf.contrib.framework.get_variables(vs)
     return d_h5, variables