help='save log') # TO ADD: save_result args = parser.parse_args() device = 'cuda:0' randomized = False model_data_path = os.path.join( model_path, dataset + '_drop_' + str(args.frame_drop) + '_no_aff') if not os.path.exists(model_data_path): os.mkdir(model_data_path) args.work_dir = model_data_path # if dataset == 'edin': data_dict, [data_dict_train, data_dict_valid] = \ loader.load_edin_data(data_path, num_labels, frame_drop=args.frame_drop, add_mirrored=args.add_mirrored, randomized=randomized) # data_dict['affective_features'], affs_max, affs_min = loader.scale_data(data_dict['affective_features']) print('Data points for training:\t{}'.format(len(data_dict_train))) print('Data points for validation:\t{}'.format(len(data_dict_valid))) print('Total:\t\t\t\t\t\t{}'.format(len(data_dict))) num_frames = data_dict['0']['positions'].shape[0] joints_dict = data_dict['0']['joints_dict'] joint_names = joints_dict['joint_names'] joint_offsets = joints_dict['joint_offsets_all'] joint_parents = joints_dict['joint_parents'] num_joints = len(joint_parents) coords = data_dict['0']['positions'].shape[-1] data_loader = dict(train=data_dict_train, test=data_dict) # elif dataset == 'cmu': # data_dict, num_frames = loader.load_cmu_data(data_path, # joints_to_model=joints_to_model,
type=int, default=5, metavar='FD', help='frame downsample rate (default: 1)') # CAHNGE THIS, TRY WITH 3 and 5 # TO ADD: save_result args = parser.parse_args() device = 'cuda:0' num_joints = 21 num_labels = [4, 3, 3] num_classes = 4 data, labels, [data_train, data_test, labels_train, labels_test] =\ loader.load_edin_data( 'datasets/data_edin_locomotion_pose_diff_aff_drop_{}.npz'.format(args.frame_drop), 'datasets/labels_edin_locomotion', num_labels) graph_dict = {'strategy': 'spatial'} if args.train: X_train, X_val = torch.from_numpy(data_train).cuda(), torch.from_numpy( data_test).cuda() Y_train, Y_val = torch.from_numpy(labels_train).cuda(), torch.from_numpy( labels_test).cuda() train_set = TensorDataset(X_train, Y_train) val_set = TensorDataset(X_val, Y_val) train_loader = DataLoader(train_set, batch_size=128) val_loader = DataLoader(val_set, batch_size=128)
help='path to save model') # TO ADD: save_result args = parser.parse_args() device = 'cuda:0' if dataset == 'ewalk': [data_train, data_test, poses_train, poses_test, rotations_train, rotations_test, translations_train, translations_test, affective_features_train, affective_features_test, num_frames_train, num_frames_test, labels_train, labels_test], data_max, data_min =\ loader.load_ewalk_data(data_path, coords, num_joints, upsample=upsample) elif dataset == 'edin': [data_train, data_test, poses_train, poses_test, rotations_train, rotations_test, translations_train, translations_test, affective_features_train, affective_features_test, num_frames_train, num_frames_test, labels_train, labels_test], label_weights =\ loader.load_edin_data(data_path, coords, num_joints, num_labels, frame_drop=args.frame_drop) diffs_dim = int(rotations_train.shape[-1] / num_joints) affs_dim = affective_features_train.shape[-1] + deep_dim affective_features = np.concatenate( (affective_features_train, affective_features_test), axis=0) affective_features, affs_max, affs_min = loader.scale_data(affective_features) affective_features_train, _, _ = loader.scale_data(affective_features_train, affs_max, affs_min) affective_features_test, _, _ = loader.scale_data(affective_features_test, affs_max, affs_min) num_frames_max = rotations_train.shape[1] num_frames_out = num_frames_max - 1 num_frames_train_norm = num_frames_train / num_frames_max num_frames_test_norm = num_frames_test / num_frames_max data_loader = list() data_loader.append(