Esempio n. 1
0
    def register_algorithms_and_preprocessors(self):
        try:
            from custom.algorithms import CUSTOM_ALGORITHMS
            from custom.preprocessors import CUSTOM_PREPROCESSORS
            from custom.models.impala_cnn_tf import ImpalaCNN
        except ModuleNotFoundError:
            from algorithms import CUSTOM_ALGORITHMS
            from preprocessors import CUSTOM_PREPROCESSORS
            from models.impala_cnn_tf import ImpalaCNN

        load_algorithms(CUSTOM_ALGORITHMS)
        load_preprocessors(CUSTOM_PREPROCESSORS)
        ModelCatalog.register_custom_model("impala_cnn_tf", ImpalaCNN)
Esempio n. 2
0
    def register_algorithms_and_preprocessors(self):
        # TODO(annaluo@): register custom model via dynamic sourcing
        try:
            from custom.algorithms import CUSTOM_ALGORITHMS
            from custom.preprocessors import CUSTOM_PREPROCESSORS
            from custom.models.my_vision_network import MyVisionNetwork
        except ModuleNotFoundError:
            from algorithms import CUSTOM_ALGORITHMS
            from preprocessors import CUSTOM_PREPROCESSORS
            from models.my_vision_network import MyVisionNetwork

        load_algorithms(CUSTOM_ALGORITHMS)

        load_preprocessors(CUSTOM_PREPROCESSORS)
        ModelCatalog.register_custom_model("my_vision_network",
                                           MyVisionNetwork)
Training with Config:
    python ./train.py -f experiments/simple-corridor-0.yaml


Note that -f overrides all other trial-specific command-line options.
"""

# Register all necessary assets in tune registries
load_envs(os.getcwd())  # Load envs
load_models(os.getcwd())  # Load models
# Load custom algorithms
from algorithms import CUSTOM_ALGORITHMS
load_algorithms(CUSTOM_ALGORITHMS)
# Load custom preprocessors
from preprocessors import CUSTOM_PREPROCESSORS
load_preprocessors(CUSTOM_PREPROCESSORS)

print(ray.rllib.contrib.registry.CONTRIBUTED_ALGORITHMS)


def create_parser(parser_creator=None):
    parser = make_parser(parser_creator=parser_creator,
                         formatter_class=argparse.RawDescriptionHelpFormatter,
                         description="Train a reinforcement learning agent.",
                         epilog=EXAMPLE_USAGE)

    # See also the base parser definition in ray/tune/config_parser.py
    parser.add_argument(
        "--ray-address",
        default=None,
        type=str,
Esempio n. 4
0
EXAMPLE_USAGE = """
Training example:
    python ./train.py --run DQN --env CartPole-v0

Training with Config:
    python ./train.py -f experiments/simple-corridor-0.yaml


Note that -f overrides all other trial-specific command-line options.
"""

# Register all necessary assets in tune registries
load_envs(os.getcwd())  # Load envs
load_models(os.getcwd())  # Load models
load_preprocessors(os.getcwd())  # Load preprocessors


def create_parser(parser_creator=None):
    parser = make_parser(parser_creator=parser_creator,
                         formatter_class=argparse.RawDescriptionHelpFormatter,
                         description="Train a reinforcement learning agent.",
                         epilog=EXAMPLE_USAGE)

    # See also the base parser definition in ray/tune/config_parser.py
    parser.add_argument(
        "--ray-address",
        default=None,
        type=str,
        help="Connect to an existing Ray cluster at this address instead "
        "of starting a new one.")