Esempio n. 1
0
    def post(self, request, pk):
        serializer = StudentSerializer(data=request.data)

        if serializer.is_valid():
            course = Course.objects.get(pk=pk)
            email = serializer.validated_data['email']

            try:
                student = User.objects.get(email=email)
                if StudentOnCourse.objects.filter(student=student,
                                                  course=course):
                    return Response(
                        {
                            "message":
                            f"Student {student.email} is already on course"
                        }, status.HTTP_100_CONTINUE)

                StudentOnCourse.objects.create(
                    student=student,
                    course=course,
                    course_is_paid=True,
                )

                students = course.students.all()
                user_serializer = StudentSerializer(students, many=True)
                return Response(user_serializer.data, status.HTTP_201_CREATED)

            except User.DoesNotExist:
                logging.error("Student does not exists")
                return Response({"error": "Student does not exists"},
                                status=status.HTTP_400_BAD_REQUEST)

        logging.error(serializer.errors)
        return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)
Esempio n. 2
0
    def patch(self, request, pk):
        course = get_object_or_404(Course, pk=pk)
        serializer = CourseSerializer(instance=course, data=request.data)
        if serializer.is_valid():
            serializer.save()
            return Response(request.data)

        logging.error(serializer.errors)
        return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)
Esempio n. 3
0
    def post(self, request):
        serializer = CourseSerializer(data=request.data)
        data = request.data
        if serializer.is_valid():
            if not data or data['start_date']:
                return Response({'message': "start_date is cannot be empty"},
                                status=status.HTTP_400_BAD_REQUEST)
            serializer.save()
            return Response(serializer.data, status=status.HTTP_201_CREATED)

        logging.error(serializer.errors)
        return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)
Esempio n. 4
0
 def init_env(self, local_shard_num=1):
     if (local_shard_num > 250):
         logging.error("shard num must be less than or equal to 250")
         exit()
     self.free_ports = self._get_free_endpoints(local_shard_num, 40000)
     import socket
     ip = socket.gethostbyname(socket.gethostname())
     self.free_endpoints = ["{}:{}".format(ip, x) for x in self.free_ports]
     self._comm.barrier()
     self.node_type = 1
     if self._comm.Get_rank() == 0:
         self.node_type = 0
     self.group_comm = self._comm.Split(self.node_type)
     self.all_endpoints = self._comm.allgather(self.free_endpoints)
Esempio n. 5
0
def user_is_registered_email(email):
    """ Send letter to new users """

    site = Site.objects.get_current()

    try:
        user = User.objects.get(email=email)
        subject = f'You are registered on {site.name}'
        message = f'{user.full_name}, welcome to our site <a href="{site.domain}">{site.name}</a><br>' \
                  f'We are glad to see you here, please, write us if you need help'
        send_mail(
            subject,
            message,
            settings.EMAIL_HOST_USER,
            [email],
            html_message=message
        )

    except User.DoesNotExist:
        logging.error(f'User with email {email} not found')
Esempio n. 6
0
def load_vocab(filename):
    with open(filename) as f:
        return json.loads(f.read())


if os.path.exists(VOCAB_PATH):
    logging.info("load vocab form: {}".format(VOCAB_PATH))
    VOCAB = load_vocab(VOCAB_PATH)
else:
    #TODO: singleton
    logging.info("build vocab form: {}".format(TRAIN_DATA_PATH))
    VOCAB = build_vocab(TRAIN_DATA_PATH)
    logging.info("save vocab into: {}".format(VOCAB_PATH))
    save_vocab(VOCAB_PATH, VOCAB)
if VOCAB is None:
    logging.error("load vocab error")
    raise Exception("load vocab error")


def train_reader(lines):
    def local_iter():
        seg_id = 0
        for line in lines:
            assert (len(line.split("\t")) == 3)
            uid, _, input_str = line.split("\t")
            data = json.loads(input_str)
            data_x = data["x"]
            data_y = data["y"]
            data_mask = data["mask"]

            input_data, input_length = process_x(data_x, VOCAB)
Esempio n. 7
0
    def _test(self, date):
        if self.trainer.infer_one_user_func is None:
            pass
        logging.info("doing test...")
        if self.test_sampler is None:
            logging.error("self.test_sampler should not be None when testing")

        sim_idx = self.role_maker.simulator_idx()
        sim_num = self.role_maker.simulator_num()
        user_info_dict = self.test_sampler.sample_user_list(
            self.scheduler_client,
            date,
            sim_idx,
            len(self.data_client.stub_list),
            sim_num, )
        if self.do_profile:
            print("test user info_dict: ", user_info_dict)
        global_param_dict = self.scheduler_client.get_global_params()

        def divide_chunks(l, n):
            for i in range(0, len(l), n):
                yield l[i:i + n]

        # at most 50 process for testing
        chunk_size = 50
        # at most 100 uid for testing
        max_test_uids = 100
        uid_chunks = divide_chunks(user_info_dict.keys(), chunk_size)
        os.system("rm -rf _test_result")
        os.system("mkdir _test_result")

        tested_uids = 0
        for uids in uid_chunks:
            if tested_uids >= max_test_uids:
                break
            processes = []
            for user in uids:
                arg_dict = {
                    "uid": str(user),
                    "date": date,
                    "data_endpoints":
                    self.role_maker.get_data_server_endpoints(),
                    "global_params": global_param_dict,
                    "user_param_names": self.trainer.get_user_param_names(),
                    "global_param_names":
                    self.trainer.get_global_param_names(),
                    "infer_result_dir": "_test_result/uid-%s" % user,
                }
                p = Process(
                    target=self.trainer.infer_one_user_func,
                    args=(arg_dict, self.trainer.trainer_config))
                p.start()
                processes.append(p)
            if self.do_profile:
                logging.info("wait test processes to close")
            for i, p in enumerate(processes):
                processes[i].join()
            tested_uids += chunk_size

        infer_results = []
        # only support one test metric now
        for uid in os.listdir("_test_result"):
            with open("_test_result/" + uid + "/res", 'r') as f:
                sample_cout, metric = f.readlines()[0].strip('\n').split('\t')
                infer_results.append((int(sample_cout), float(metric)))
        if sum([x[0] for x in infer_results]) == 0:
            logging.info("infer results: 0.0")
        else:
            count = sum([x[0] for x in infer_results])
            metric = sum([x[0] * x[1] for x in infer_results]) / count
            logging.info("infer results: %f" % metric)
Esempio n. 8
0
def train_one_user(arg_dict, trainer_config):
    show_metric = trainer_config["show_metric"]
    shuffle = trainer_config["shuffle"]
    max_training_steps = trainer_config["max_training_steps"]
    batch_size = trainer_config["batch_size"]
    # logging.info("training one user...")
    main_program = fluid.Program.parse_from_string(
        trainer_config["main_program_desc"])
    startup_program = fluid.Program.parse_from_string(
        trainer_config["startup_program_desc"])
    place = fluid.CPUPlace()
    exe = fluid.Executor(place)
    scope = fluid.global_scope()
    if (startup_program is None):
        logging.error("startup_program is None")
        exit()
    exe.run(startup_program)

    feeder = fluid.DataFeeder(feed_list=trainer_config["input_names"],
                              place=place,
                              program=main_program)
    data_server_endpoints = arg_dict["data_endpoints"]
    # create data clients
    data_client = DataClient()
    data_client.set_data_server_endpoints(data_server_endpoints)
    uid = arg_dict["uid"]
    date = arg_dict["date"]
    global_param_dict = arg_dict["global_params"]
    user_data = data_client.get_data_by_uid(uid, date)
    train_reader = reader.train_reader(user_data)
    if shuffle == True:
        train_reader = paddle.reader.shuffle(train_reader, buf_size=10000)
    train_reader = paddle.batch(train_reader, batch_size=batch_size)

    # get user param
    # logging.debug("do not need to get user params")

    set_global_param_dict(arg_dict["global_param_names"],
                          arg_dict["global_params"], scope)

    if (main_program is None):
        logging.error("main_program is None")
        exit()

    epoch = trainer_config["epoch"]
    max_steps_in_epoch = trainer_config.get("max_steps_in_epoch", -1)
    metrics = trainer_config["metrics"]
    fetch_list = []
    for var in trainer_config["target_names"]:
        fetch_list.append(var)

    for ei in range(epoch):
        fetch_res_list = []
        trained_sample_num = 0
        step = 0
        num_layers = trainer_config["num_layers"]
        hidden_size = trainer_config["n_hidden"]
        tot_loss, tot_correct = 0, 0
        tot_samples = 0
        init_hidden, init_cell = generate_init_data(batch_size, num_layers,
                                                    hidden_size)
        for data in train_reader():
            feed_data, input_lengths = prepare_input(batch_size, data,
                                                     init_hidden, init_cell)
            fetch_res = exe.run(main_program,
                                feed=feeder.feed(feed_data),
                                fetch_list=fetch_list)
            loss, last_hidden, last_cell, correct = fetch_res

            init_hidden = np.array(last_hidden)
            init_cell = np.array(last_cell)
            tot_loss += np.array(loss)
            tot_correct += np.array(correct)
            tot_samples += np.sum(input_lengths)
            step += 1
            trained_sample_num += len(data)
            fetch_res_list.append([np.array(loss), np.array(correct)])
            if max_steps_in_epoch != -1 and step >= max_steps_in_epoch:
                break

        if show_metric and trained_sample_num > 0:
            loss = tot_loss / step
            acc = float(tot_correct) / tot_samples
            print("loss: {}, acc: {}".format(loss, acc))

    local_updated_param_dict = {}
    # update user param
    # logging.debug("do not need to update user params")

    data_client.set_param_by_uid(uid, local_updated_param_dict)
    # global_updated_param_dict = {}
    write_global_param_file = arg_dict["write_global_param_file"]
    #os.makedirs("%s/params" % write_global_param_file)
    for var_name in arg_dict["global_param_names"]:
        var = scope.var(var_name).get_tensor().__array__().astype(np.float32)
        filename = os.path.join(write_global_param_file, "params", var_name)
        #logging.info("filename: {}".format(filename))
        dirname = os.path.dirname(filename)
        if not os.path.exists(dirname):
            os.makedirs(dirname)
        with open(filename, "w") as f:
            np.save(f, var)
    with open("%s/_info" % write_global_param_file, "w") as f:
        pickle.dump([uid, trained_sample_num], file=f)
Esempio n. 9
0
def infer_one_user(arg_dict, trainer_config):
    """
    infer a model with global_param and user params
    input:
        global_param
        user_params
        infer_program
        user_data
    output:
        [sample_cout, top1] 
    """
    # run startup program, set params
    uid = arg_dict["uid"]
    batch_size = trainer_config["batch_size"]
    startup_program = fluid.Program.parse_from_string(
        trainer_config["startup_program_desc"])
    infer_program = fluid.Program.parse_from_string(
        trainer_config["infer_program_desc"])
    place = fluid.CPUPlace()
    exe = fluid.Executor(place)
    scope = fluid.global_scope()

    if (startup_program is None):
        logging.error("startup_program is None")
        exit()
    if (infer_program is None):
        logging.error("infer_program is None")
        exit()

    exe.run(startup_program)

    data_client = DataClient()
    data_client.set_data_server_endpoints(arg_dict["data_endpoints"])

    # get user param
    # logging.debug("do not need to get user params")

    set_global_param_dict(arg_dict["global_param_names"],
                          arg_dict["global_params"], scope)

    # reader
    date = arg_dict["date"]
    global_param_dict = arg_dict["global_params"]
    user_data = data_client.get_data_by_uid(uid, date)
    infer_reader = reader.infer_reader(user_data)
    infer_reader = paddle.batch(infer_reader, batch_size=batch_size)

    # run infer program
    os.mkdir(arg_dict["infer_result_dir"])
    #pred_file = open(arg_dict["infer_result_dir"] + '/' + "pred_file", "w")
    feeder = fluid.DataFeeder(feed_list=trainer_config["input_names"],
                              place=place,
                              program=infer_program)

    fetch_list = trainer_config["target_names"]
    #logging.info("fetch_list: {}".format(fetch_list))
    fetch_res = []
    sample_count = 0

    num_layers = trainer_config["num_layers"]
    hidden_size = trainer_config["n_hidden"]
    tot_correct, tot_loss = 0, 0
    tot_samples, tot_batches = 0, 0
    init_hidden, init_cell = generate_init_data(batch_size, num_layers,
                                                hidden_size)
    for data in infer_reader():
        feed_data, input_lengths = prepare_input(batch_size, data, init_hidden,
                                                 init_cell)
        fetch_res = exe.run(infer_program,
                            feed=feeder.feed(feed_data),
                            fetch_list=fetch_list)
        loss, last_hidden, last_cell, correct = fetch_res

        cost_eval = np.array(loss)
        init_hidden = np.array(last_hidden)
        init_cell = np.array(last_cell)
        correct_val = np.array(correct)
        tot_loss += cost_eval
        tot_correct += correct_val
        tot_samples += np.sum(input_lengths)
        tot_batches += 1

    loss = tot_loss / tot_batches
    acc = float(tot_correct) / tot_samples
    logging.info("infer acc: {}".format(acc))
    with open(arg_dict["infer_result_dir"] + "/res", "w") as f:
        f.write("%d\t%f\n" % (1, acc))