Esempio n. 1
0
class Metrics(object):
    def __int__(self):
        self.nme = None
        self.auc = None
        self.loss = None

    @metric
    def add_nme(self, decay=0.999):
        self.nme = NME(decay)

    @metric
    def add_auc(self, low=0, high=0.08, step=0.01, decay=0.99):
        self.auc = AUC(low, high, step, decay)

    @metric
    def add_loss(self, decay=0.999):
        self.loss = Loss(decay)

    def clear(self):
        self.nme.clear()
        self.auc.clear()
        self.loss.clear()
def main(data_path, batch_size, lr, n_epoch, kernel_size, filter_start,
         sh_degree, depth, n_side, rf_name, wm, gm, csf, loss_fn_intensity,
         loss_fn_non_negativity, loss_fn_sparsity, sigma_sparsity,
         intensity_weight, nn_fodf_weight, sparsity_weight, save_path,
         save_every, normalize, load_state):
    """Train a model
    Args:
        data_path (str): Data path
        batch_size (int): Batch size
        lr (float): Learning rate
        n_epoch (int): Number of training epoch
        kernel_size (int): Kernel Size
        filter_start (int): Number of output features of the first convolution layer
        sh_degree (int): Spherical harmonic degree of the fODF
        depth (int): Graph subsample depth
        n_side (int): Resolution of the Healpix map
        rf_name (str): Response function algorithm name
        wm (float): Use white matter
        gm (float): Use gray matter
        csf (float): Use CSF
        loss_fn_intensity (str): Name of the intensity loss
        loss_fn_non_negativity (str): Name of the nn loss
        loss_fn_sparsity (str): Name of the sparsity loss
        intensity_weight (float): Weight of the intensity loss
        nn_fodf_weight (float): Weight of the nn loss
        sparsity_weight (float): Weight of the sparsity loss
        save_path (str): Save path
        save_every (int): Frequency to save the model
        normalize (bool): Normalize the fODFs
        load_state (str): Load pre trained network
    """

    # Load the shell and the graph samplings
    shellSampling = ShellSampling(f'{data_path}/bvecs.bvecs',
                                  f'{data_path}/bvals.bvals',
                                  sh_degree=sh_degree,
                                  max_sh_degree=8)
    graphSampling = HealpixSampling(n_side, depth, sh_degree=sh_degree)

    # Load the image and the mask
    dataset = DMRIDataset(f'{data_path}/features.nii', f'{data_path}/mask.nii')
    dataloader_train = DataLoader(dataset=dataset,
                                  batch_size=batch_size,
                                  shuffle=True)
    n_batch = len(dataloader_train)

    # Load the Polar filter used for the deconvolution
    polar_filter_equi, polar_filter_inva = load_response_function(
        f'{data_path}/response_functions/{rf_name}',
        wm=wm,
        gm=gm,
        csf=csf,
        max_degree=sh_degree,
        n_shell=len(shellSampling.shell_values))

    # Create the deconvolution model
    model = Model(polar_filter_equi, polar_filter_inva, shellSampling,
                  graphSampling, filter_start, kernel_size, normalize)
    if load_state:
        print(load_state)
        model.load_state_dict(torch.load(load_state), strict=False)
    # Load model in GPU
    model = model.to(DEVICE)
    torch.save(model.state_dict(),
               os.path.join(save_path, 'history', 'epoch_0.pth'))

    # Loss
    intensity_criterion = Loss(loss_fn_intensity)
    non_negativity_criterion = Loss(loss_fn_non_negativity)
    sparsity_criterion = Loss(loss_fn_sparsity, sigma_sparsity)
    # Create dense interpolation used for the non-negativity and the sparsity losses
    denseGrid_interpolate = ComputeSignal(
        torch.Tensor(graphSampling.sampling.SH2S))
    denseGrid_interpolate = denseGrid_interpolate.to(DEVICE)

    # Optimizer/Scheduler
    optimizer = torch.optim.Adam(model.parameters(), lr=lr)
    scheduler = ReduceLROnPlateau(optimizer,
                                  threshold=0.01,
                                  factor=0.1,
                                  patience=3,
                                  verbose=True)
    save_loss = {}
    save_loss['train'] = {}
    writer = SummaryWriter(log_dir=os.path.join(data_path, 'result', 'run',
                                                save_path.split('/')[-1]))
    tb_j = 0
    # Training loop
    for epoch in range(n_epoch):
        # TRAIN
        model.train()

        # Initialize loss to save and plot.
        loss_intensity_ = 0
        loss_sparsity_ = 0
        loss_non_negativity_fodf_ = 0

        # Train on batch.
        for batch, data in enumerate(dataloader_train):
            # Delete all previous gradients
            optimizer.zero_grad()
            to_print = ''

            # Load the data in the DEVICE
            input = data['input'].to(DEVICE)
            output = data['output'].to(DEVICE)
            mask = data['mask'].to(DEVICE)

            x_reconstructed, x_deconvolved_equi_shc, x_deconvolved_inva_shc = model(
                input)
            ###############################################################################################
            ###############################################################################################
            # Loss
            ###############################################################################################
            ###############################################################################################
            # Intensity loss
            loss_intensity = intensity_criterion(x_reconstructed, output, mask)
            loss_intensity_ += loss_intensity.item()
            loss = intensity_weight * loss_intensity
            to_print += ', Intensity: {0:.10f}'.format(loss_intensity.item())

            if not x_deconvolved_equi_shc is None:
                x_deconvolved_equi = denseGrid_interpolate(
                    x_deconvolved_equi_shc)
                ###############################################################################################
                # Sparsity loss
                equi_sparse = torch.zeros(x_deconvolved_equi.shape).to(DEVICE)
                loss_sparsity = sparsity_criterion(x_deconvolved_equi,
                                                   equi_sparse, mask)
                loss_sparsity_ += loss_sparsity.item()
                loss += sparsity_weight * loss_sparsity
                to_print += ', Equi Sparsity: {0:.10f}'.format(
                    loss_sparsity.item())

                ###############################################################################################
                # Non negativity loss
                fodf_neg = torch.min(x_deconvolved_equi,
                                     torch.zeros_like(x_deconvolved_equi))
                fodf_neg_zeros = torch.zeros(fodf_neg.shape).to(DEVICE)
                loss_non_negativity_fodf = non_negativity_criterion(
                    fodf_neg, fodf_neg_zeros, mask)
                loss_non_negativity_fodf_ += loss_non_negativity_fodf.item()
                loss += nn_fodf_weight * loss_non_negativity_fodf
                to_print += ', Equi NN: {0:.10f}'.format(
                    loss_non_negativity_fodf.item())

                ###############################################################################################
                # Partial volume regularizer
                regularizer_equi = 0.00001 * 1 / torch.mean(
                    x_deconvolved_equi_shc[mask == 1][:, :, 0]) * np.sqrt(
                        4 * np.pi)
                loss += regularizer_equi
                to_print += ', Equi regularizer: {0:.10f}'.format(
                    regularizer_equi.item())

            if not x_deconvolved_inva_shc is None:
                ###############################################################################################
                # Partial volume regularizer
                regularizer_inva = 0.00001 * 1 / torch.mean(
                    x_deconvolved_inva_shc[mask == 1][:, :, 0]) * np.sqrt(
                        4 * np.pi)
                loss += regularizer_inva
                to_print += ', Inva regularizer: {0:.10f}'.format(
                    regularizer_inva.item())

            ###############################################################################################
            # Tensorboard
            tb_j += 1
            writer.add_scalar('Batch/train_intensity', loss_intensity.item(),
                              tb_j)
            writer.add_scalar('Batch/train_sparsity', loss_sparsity.item(),
                              tb_j)
            writer.add_scalar('Batch/train_nn',
                              loss_non_negativity_fodf.item(), tb_j)
            writer.add_scalar('Batch/train_total', loss.item(), tb_j)

            ###############################################################################################
            # To print loss
            to_print = 'Epoch [{0}/{1}], Iter [{2}/{3}]: Loss: {4:.10f}'.format(epoch + 1, n_epoch,
                                                                                batch + 1, n_batch,
                                                                                loss.item()) \
                       + to_print
            print(to_print, end="\r")
            ###############################################################################################
            # Loss backward
            loss = loss
            loss.backward()
            optimizer.step()

            if (batch + 1) % 500 == 0:
                torch.save(
                    model.state_dict(),
                    os.path.join(save_path, 'history',
                                 'epoch_{0}.pth'.format(epoch + 1)))

        ###############################################################################################
        # Save and print mean loss for the epoch
        print("")
        to_print = ''
        loss_ = 0
        # Mean results of the last epoch
        save_loss['train'][epoch] = {}

        save_loss['train'][epoch]['loss_intensity'] = loss_intensity_ / n_batch
        save_loss['train'][epoch]['weight_loss_intensity'] = intensity_weight
        loss_ += intensity_weight * loss_intensity_
        to_print += ', Intensity: {0:.10f}'.format(loss_intensity_ / n_batch)

        save_loss['train'][epoch]['loss_sparsity'] = loss_sparsity_ / n_batch
        save_loss['train'][epoch]['weight_loss_sparsity'] = sparsity_weight
        loss_ += sparsity_weight * loss_sparsity_
        to_print += ', Sparsity: {0:.10f}'.format(loss_sparsity_ / n_batch)

        save_loss['train'][epoch][
            'loss_non_negativity_fodf'] = loss_non_negativity_fodf_ / n_batch
        save_loss['train'][epoch][
            'weight_loss_non_negativity_fodf'] = nn_fodf_weight
        loss_ += nn_fodf_weight * loss_non_negativity_fodf_
        to_print += ', WM fODF NN: {0:.10f}'.format(loss_non_negativity_fodf_ /
                                                    n_batch)

        save_loss['train'][epoch]['loss'] = loss_ / n_batch
        to_print = 'Epoch [{0}/{1}], Train Loss: {2:.10f}'.format(
            epoch + 1, n_epoch, loss_ / n_batch) + to_print
        print(to_print)

        writer.add_scalar('Epoch/train_intensity', loss_intensity_ / n_batch,
                          epoch)
        writer.add_scalar('Epoch/train_sparsity', loss_sparsity_ / n_batch,
                          epoch)
        writer.add_scalar('Epoch/train_nn',
                          loss_non_negativity_fodf_ / n_batch, epoch)
        writer.add_scalar('Epoch/train_total', loss_ / n_batch, epoch)

        ###############################################################################################
        # VALIDATION
        scheduler.step(loss_ / n_batch)
        if epoch == 0:
            min_loss = loss_
            epochs_no_improve = 0
            n_epochs_stop = 5
            early_stop = False
        elif loss_ < min_loss * 0.999:
            epochs_no_improve = 0
            min_loss = loss_
        else:
            epochs_no_improve += 1
        if epoch > 5 and epochs_no_improve == n_epochs_stop:
            print('Early stopping!')
            early_stop = True

        ###############################################################################################
        # Save the loss and model
        with open(os.path.join(save_path, 'history', 'loss.pkl'), 'wb') as f:
            pickle.dump(save_loss, f)
        if (epoch + 1) % save_every == 0:
            torch.save(
                model.state_dict(),
                os.path.join(save_path, 'history',
                             'epoch_{0}.pth'.format(epoch + 1)))
        if early_stop:
            print("Stopped")
            break
def train(train_img_path, train_gt_path, pths_path, batch_size, lr,
          num_workers, epoch_iter, interval, checkpoint, eval_interval,
          test_img_path, submit_path):
    file_num = len(os.listdir(train_img_path))
    trainset = custom_dataset(train_img_path, train_gt_path)
    train_loader = data.DataLoader(trainset, batch_size=batch_size, \
                                      shuffle = True, num_workers=num_workers, drop_last=True)

    criterion = Loss()
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    model = EAST(pretrained=False)
    if checkpoint:
        model.load_state_dict(torch.load(checkpoint))
    data_parallel = False
    if torch.cuda.device_count() > 1:
        model = nn.DataParallel(model)
        # model = DataParallelModel(model)
        data_parallel = True
    model.to(device)
    optimizer = torch.optim.Adam(model.parameters(), lr=lr)
    # optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9,weight_decay=0)
    scheduler = lr_scheduler.MultiStepLR(optimizer,
                                         milestones=[epoch_iter // 2],
                                         gamma=0.1)
    whole_number = epoch_iter * (len(trainset) / batch_size)
    print("epoch size:%d" % (epoch_iter))
    print("batch size:%d" % (batch_size))
    print("data number:%d" % (len(trainset)))
    all_loss = []
    current_i = 0
    for epoch in range(epoch_iter):

        model.train()

        epoch_loss = 0
        epoch_time = time.time()
        for i, (img, gt_score, gt_geo, ignored_map,
                _) in enumerate(train_loader):
            current_i += 1
            start_time = time.time()
            img, gt_score, gt_geo, ignored_map = img.to(device), gt_score.to(
                device), gt_geo.to(device), ignored_map.to(device)
            pred_score, pred_geo = model(img)
            loss = criterion(gt_score, pred_score, gt_geo, pred_geo,
                             ignored_map)

            epoch_loss += loss.item()
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            lr_now = scheduler.get_last_lr()
            progress_bar(40, loss.item(), current_i, whole_number, lr_now[0])
        scheduler.step()
        print('epoch_loss is {:.8f}, epoch_time is {:.8f}'.format(
            epoch_loss / int(file_num / batch_size),
            time.time() - epoch_time))
        all_loss.append(epoch_loss / int(file_num / batch_size))
        print(time.asctime(time.localtime(time.time())))
        plt.plot(all_loss)
        plt.savefig('loss_landscape.png')
        plt.close()
        print('=' * 50)
        if (epoch + 1) % interval == 0:
            state_dict = model.module.state_dict(
            ) if data_parallel else model.state_dict()
            torch.save(
                state_dict,
                os.path.join(pths_path,
                             'model_epoch_{}.pth'.format(epoch + 1)))
            output = open(os.path.join(pths_path, 'loss.pkl'), 'wb')
            pkl.dump(all_loss, output)
Esempio n. 4
0
    def __init__(self, batch_size=32, optimizer_name="Adam", lr=1e-3, weight_decay=1e-5,
                 epochs=200, model_name="model01", gpu_ids=None, resume=None, tqdm=None):
        """
        args:
            batch_size = (int) batch_size of training and validation
            lr = (float) learning rate of optimization
            weight_decay = (float) weight decay of optimization
            epochs = (int) The number of epochs of training
            model_name = (string) The name of training model. Will be folder name.
            gpu_ids = (List) List of gpu_ids. (e.g. gpu_ids = [0, 1]). Use CPU, if it is None. 
            resume = (Dict) Dict of some settings. (resume = {"checkpoint_path":PATH_of_checkpoint, "fine_tuning":True or False}). 
                     Learn from scratch, if it is None.
            tqdm = (tqdm Object) progress bar object. Set your tqdm please.
                   Don't view progress bar, if it is None.
        """
        # Set params
        self.batch_size = batch_size
        self.epochs = epochs
        self.start_epoch = 0
        self.use_cuda = (gpu_ids is not None) and torch.cuda.is_available
        self.tqdm = tqdm
        self.use_tqdm = tqdm is not None
        # ------------------------- #
        # Define Utils. (No need to Change.)
        """
        These are Project Modules.
        You may not have to change these.
        
        Saver: Save model weight. / <utils.saver.Saver()>
        TensorboardSummary: Write tensorboard file. / <utils.summaries.TensorboardSummary()>
        Evaluator: Calculate some metrics (e.g. Accuracy). / <utils.metrics.Evaluator()>
        """
        ## ***Define Saver***
        self.saver = Saver(model_name, lr, epochs)
        self.saver.save_experiment_config()
        
        ## ***Define Tensorboard Summary***
        self.summary = TensorboardSummary(self.saver.experiment_dir)
        self.writer = self.summary.create_summary()
        
        # ------------------------- #
        # Define Training components. (You have to Change!)
        """
        These are important setting for training.
        You have to change these.
        
        make_data_loader: This creates some <Dataloader>s. / <dataloader.__init__>
        Modeling: You have to define your Model. / <modeling.modeling.Modeling()>
        Evaluator: You have to define Evaluator. / <utils.metrics.Evaluator()>
        Optimizer: You have to define Optimizer. / <utils.optimizer.Optimizer()>
        Loss: You have to define Loss function. / <utils.loss.Loss()>
        """
        ## ***Define Dataloader***
        self.train_loader, self.val_loader, self.test_loader, self.num_classes = make_data_loader(batch_size)
        
        ## ***Define Your Model***
        self.model = Modeling(self.num_classes)
        
        ## ***Define Evaluator***
        self.evaluator = Evaluator(self.num_classes)
        
        ## ***Define Optimizer***
        self.optimizer = Optimizer(self.model.parameters(), optimizer_name=optimizer_name, lr=lr, weight_decay=weight_decay)
        
        ## ***Define Loss***
        self.criterion = Loss()
        
        # ------------------------- #
        # Some settings
        """
        You don't have to touch bellow code.
        
        Using cuda: Enable to use cuda if you want.
        Resuming checkpoint: You can resume training if you want.
        """
        ## ***Using cuda***
        if self.use_cuda:
            self.model = torch.nn.DataParallel(self.model, device_ids=gpu_ids).cuda()

        ## ***Resuming checkpoint***
        """You can ignore bellow code."""
        self.best_pred = 0.0
        if resume is not None:
            if not os.path.isfile(resume["checkpoint_path"]):
                raise RuntimeError("=> no checkpoint found at '{}'" .format(resume["checkpoint_path"]))
            checkpoint = torch.load(resume["checkpoint_path"])
            self.start_epoch = checkpoint['epoch']
            if self.use_cuda:
                self.model.module.load_state_dict(checkpoint['state_dict'])
            else:
                self.model.load_state_dict(checkpoint['state_dict'])
            if resume["fine_tuning"]:
                # resume params of optimizer, if run fine tuning.
                self.optimizer.load_state_dict(checkpoint['optimizer'])
                self.start_epoch = 0
            self.best_pred = checkpoint['best_pred']
            print("=> loaded checkpoint '{}' (epoch {})"
                  .format(resume["checkpoint_path"], checkpoint['epoch']))
Esempio n. 5
0
from utils.loss import Loss
from utils.dataset import Yolo_dataset
from config import cfg
from utils.test_mAP import evaluate

if __name__ == "__main__":
    scaler = torch.cuda.amp.GradScaler()
    torch.backends.cudnn.benchmark = True
    anchors = np.array(cfg.anchors).reshape([-1, 2])
    model = YOLOv4(cfg.cfgfile).to(cfg.device)
    # model.load_weights('yolov4.weights')
    # model.load_state_dict(torch.load("weights/Epoch50-Total_Loss2.2437.pth"))
    vis = visdom.Visdom(env='YOLOv4')
    yolo_losses = []
    for i in range(3):
        yolo_losses.append(Loss(i))
    optimizer = optim.Adam(model.parameters(), cfg.lr)
    if cfg.Cosine_lr:
        lr_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer,
                                                            T_max=5,
                                                            eta_min=1e-5)
    else:
        lr_scheduler = optim.lr_scheduler.StepLR(optimizer,
                                                 step_size=1,
                                                 gamma=0.96)

    train_dataset = Yolo_dataset(train=True)
    val_dataset = Yolo_dataset(train=False)

    train_loader = DataLoader(train_dataset,
                              shuffle=True,
Esempio n. 6
0
def main():
    global args
    os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"  # see issue #152
    os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu

    __normalize = {'mean': (0.485, 0.456, 0.406), 'std': (0.229, 0.224, 0.225)}
    TrainImgLoader = torch.utils.data.DataLoader(DA(args.datapath,
                                                    split='train',
                                                    normalize=__normalize),
                                                 batch_size=args.train_bsize,
                                                 shuffle=True,
                                                 num_workers=1,
                                                 drop_last=False)

    ValImgLoader = torch.utils.data.DataLoader(DA(args.datapath,
                                                  split='val',
                                                  normalize=__normalize),
                                               batch_size=args.test_bsize,
                                               shuffle=False,
                                               num_workers=1,
                                               drop_last=False)

    TestImgLoader = torch.utils.data.DataLoader(DA(args.datapath,
                                                   split='test',
                                                   normalize=__normalize),
                                                batch_size=args.test_bsize,
                                                shuffle=False,
                                                num_workers=1,
                                                drop_last=False)

    if not os.path.isdir(args.save_path):
        os.makedirs(os.path.join(args.save_path, 'train'))
        os.makedirs(os.path.join(args.save_path, 'test'))
        os.makedirs(os.path.join(args.save_path, 'val'))
    log = logger.setup_logger(args.save_path + '/training.log')
    writer = logger.setup_tensorboard(args.save_path)

    for key, value in sorted(vars(args).items()):
        log.info(str(key) + ':' + str(value))

    model = StereoNet(k=args.stages - 1,
                      r=args.stages - 1,
                      maxdisp=args.maxdisp)
    model = nn.DataParallel(model).cuda()
    model.apply(weights_init)

    criterion = Loss(args)

    optimizer = optim.RMSprop(model.parameters(), lr=args.lr)
    scheduler = lr_scheduler.StepLR(optimizer,
                                    step_size=args.stepsize,
                                    gamma=args.gamma)

    log.info('Number of model parameters: {}'.format(
        sum([p.data.nelement() for p in model.parameters()])))

    args.start_epoch = 0

    if args.resume:
        if os.path.isfile(args.resume):
            log.info("=> loading checkpoint '{}'".format((args.resume)))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch']
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            log.info("=> loaded checkpoint '{}' (epoch {})".format(
                args.resume, checkpoint['epoch']))
        else:
            log.info("=> no checkpoint found at '{}'".format(args.resume))
            log.info("=> will start from scratch.")
    else:
        log.info("Not Resume")
    start_full_time = time.time()
    for epoch in range(args.start_epoch, args.epoch):
        log.info('This is {}-th epoch'.format(epoch))

        train(TrainImgLoader, model, criterion, optimizer, log, writer, epoch)
        test(ValImgLoader, model, log, writer, 'val', epoch)

        savefilename = args.save_path + '/checkpoint.pth'
        torch.save(
            {
                'epoch': epoch,
                'state_dict': model.state_dict(),
                'optimizer': optimizer.state_dict()
            }, savefilename)
        scheduler.step()  # will adjust learning rate

    test(TestImgLoader, model, log, writer, 'test', epoch)
    log.info('full training time = {: 2f} Hours'.format(
        (time.time() - start_full_time) / 3600))
Esempio n. 7
0
                schp.save_schp_checkpoint(
                    {
                        'state_dict': schp_model.state_dict(),
                        'cycle_n': cycle_n,
                    },
                    False,
                    "checkpoints",
                    filename=
                    f'schp_{opts.model}_{opts.dataset}_cycle{cycle_n}_checkpoint.pth'
                )
                # schp.save_schp_checkpoint({
                #     'state_dict': schp_model.state_dict(),
                #     'cycle_n': cycle_n,
                # }, False, '/content/drive/MyDrive/', filename=f'schp_{opts.model}_{opts.dataset}_checkpoint.pth')
        torch.cuda.empty_cache()
        criterion.end_log(len(train_loader))


if __name__ == '__main__':
    opts = get_argparser().parse_args(args=[])
    if 'ACE2P' in opts.model:
        opts.loss_type = 'SCP'
        opts.use_mixup = False
    os.environ['CUDA_VISIBLE_DEVICES'] = opts.gpu_ids
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    opts.device = device
    print("Device: %s" % device)
    criterion = Loss(opts)
    main(criterion)
    criterion.plot_loss('/content/drive/MyDrive/', len(criterion.log))
Esempio n. 8
0
 def add_loss(self, decay=0.999):
     self.loss = Loss(decay)
Esempio n. 9
0
def main(args, logger, summary):
    cudnn.enabled = True  # Enables bencnmark mode in cudnn, to enable the inbuilt
    cudnn.benchmark = True  # cudnn auto-tuner to find the best algorithm to use for
    # our hardware

    seed = random.randint(1, 10000)
    logger.info('======>random seed {}'.format(seed))

    random.seed(seed)  # python random seed
    np.random.seed(seed)  # set numpy random seed
    torch.manual_seed(seed)  # set random seed for cpu

    # train_set = VaiHinGen(root=args.root, split='trainl',outer_size=2*args.image_size,centre_size=args.image_size)
    # test_set  = VaiHinGen(root=args.root, split='testl',outer_size=2*args.image_size,centre_size=args.image_size)

    train_set = SkmtDataSet(args, split='train')
    val_set = SkmtDataSet(args, split='val')
    kwargs = {'num_workers': args.workers, 'pin_memory': True}

    train_loader = DataLoader(train_set,
                              batch_size=args.batch_size,
                              drop_last=True,
                              shuffle=False,
                              **kwargs)
    test_loader = DataLoader(val_set,
                             batch_size=1,
                             drop_last=True,
                             shuffle=False,
                             **kwargs)

    logger.info('======> building network')
    # set model
    model = build_skmtnet(backbone='resnet50',
                          auxiliary_head=args.auxiliary,
                          trunk_head='deeplab',
                          num_classes=args.num_classes,
                          output_stride=16)

    logger.info("======> computing network parameters")
    total_paramters = netParams(model)
    logger.info("the number of parameters: " + str(total_paramters))

    # setup optimizer
    optimizer = optim.SGD(model.parameters(),
                          lr=args.lr,
                          momentum=0.9,
                          weight_decay=args.weight_decay)

    # setup savedir
    args.savedir = (args.savedir + '/' + args.model + 'bs' +
                    str(args.batch_size) + 'gpu' + str(args.gpus) + '/')
    if not os.path.exists(args.savedir):
        os.makedirs(args.savedir)

    # setup optimization criterion
    criterion = Loss(args)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)  # set random seed for all GPU
        os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus
        model = nn.DataParallel(model).cuda()
        criterion = criterion.cuda()

    start_epoch = 0
    best_epoch = 0.
    best_overall = 0.
    best_mIoU = 0.
    best_F1 = 0.

    trainer = Trainer(args=args,
                      dataloader=train_loader,
                      model=model,
                      optimizer=optimizer,
                      criterion=criterion,
                      logger=logger,
                      summary=summary)
    tester = Tester(args=args,
                    dataloader=test_loader,
                    model=model,
                    criterion=criterion,
                    logger=logger,
                    summary=summary)

    writer = summary.create_summary()
    for epoch in range(start_epoch, args.max_epochs):
        trainer.train_one_epoch(epoch, writer)

        if (epoch % args.show_val_interval == 0):
            score, class_iou, class_acc, class_F1 = tester.test_one_epoch(
                epoch, writer)

            logger.info('======>Now print overall info:')
            for k, v in score.items():
                logger.info('======>{0:^18} {1:^10}'.format(k, v))

            logger.info('======>Now print class acc')
            for k, v in class_acc.items():
                print('{}: {:.5f}'.format(k, v))
                logger.info('======>{0:^18} {1:^10}'.format(k, v))

            logger.info('======>Now print class iou')
            for k, v in class_iou.items():
                print('{}: {:.5f}'.format(k, v))
                logger.info('======>{0:^18} {1:^10}'.format(k, v))

            logger.info('======>Now print class_F1')
            for k, v in class_F1.items():
                logger.info('======>{0:^18} {1:^10}'.format(k, v))

            if score["Mean IoU(8) : \t"] > best_mIoU:
                best_mIoU = score["Mean IoU(8) : \t"]

            if score["Overall Acc : \t"] > best_overall:
                best_overall = score["Overall Acc : \t"]
                # save model in best overall Acc
                model_file_name = args.savedir + '/best_model.pth'
                torch.save(model.state_dict(), model_file_name)
                best_epoch = epoch

            if score["Mean F1 : \t"] > best_F1:
                best_F1 = score["Mean F1 : \t"]

            logger.info("======>best mean IoU:{}".format(best_mIoU))
            logger.info("======>best overall : {}".format(best_overall))
            logger.info("======>best F1: {}".format(best_F1))
            logger.info("======>best epoch: {}".format(best_epoch))

            # save the model
            model_file_name = args.savedir + '/model.pth'
            state = {"epoch": epoch + 1, "model": model.state_dict()}

            logger.info('======> Now begining to save model.')
            torch.save(state, model_file_name)
            logger.info('======> Save done.')