Esempio n. 1
0
    def __getitem__(self, idx):
        if self.mode=='train':
            item = self.data[idx]
            img_path = self.path + '%s.png'%item['img_id']
            img = plt.imread(img_path)
            width, height = img.shape
            img = cv2.resize(img, (self.IMG_SIZE, self.IMG_SIZE))
            img = np.expand_dims(img, 0)

            cnt_masks = item['cnt_masks']
            masks_in_rle = item['masks']
            if cnt_masks==1:
                mask = rle2mask(masks_in_rle[0], width, height).T
            elif cnt_masks>1: #v1: just simply merge overlapping masks to get union of masks
                masks = []
                for mask_in_rle in masks_in_rle:
                    mask = rle2mask(mask_in_rle, width, height).T
                    masks.append(mask)
                mask = (np.array(masks).sum(axis=0)>=1).astype(np.int)#mask as 1 if at least one of the mask is 1
            else:
                mask = np.zeros((self.IMG_SIZE, self.IMG_SIZE))
            mask = cv2.resize(mask.astype(np.float), (self.IMG_SIZE, self.IMG_SIZE))
            mask = np.expand_dims(mask, 0)
            ##augmentation
            if self.augmentation:
                img, mask = do_augmentation(img, mask)
            return img, mask
        elif self.mode=='test':
            img_id = self.img_id_list[idx]
            img_path = self.path + '%s.png'%img_id
            img = plt.imread(img_path)
            width, height = img.shape
            img = cv2.resize(img, (self.IMG_SIZE, self.IMG_SIZE))
            img = np.expand_dims(img, 0)
            return img
Esempio n. 2
0
def csv2mask(in_path, out_dir, resize=None, v=0):
    """
    Converts given .csv annotations, creates masks in out_dir
    :param in_path: str: file path to `.csv`
    :param out_dir: str: path to out dir where to save .png images
    :param resize: tuple(int, int): if provided saves
            resized images
    :param v: int: verbosity, if 1 shows `tqdm`
    :return: NoneType: None object
    """
    df = pd.read_csv(in_path, dtype=str, sep=", ")
    df = df.groupby('ImageId')["EncodedPixels"].apply(list)
    it = df.items()
    if v:
        it = tqdm(it)
    for image_id, row in it:
        mask = blank_mask(WIDTH, HEIGHT)
        for i, rle_mask in enumerate(row, 1):
            if rle_mask == "-1":
                continue
            i_mask = rle2mask(rle_mask, WIDTH, HEIGHT)
            mask[i_mask > 125] = i
        out_fname = "{}.png".format(image_id)
        out_fp = os.path.join(out_dir, out_fname)
        if resize:
            mask = cv2.resize(mask, resize)
        cv2.imwrite(out_fp, mask)
Esempio n. 3
0
def test():
    df = pd.read_csv('../input/train-rle.csv', header=None, index_col=0)
    Y_train = np.zeros((1024, 1024, 1))
    for x in df.loc['1.2.276.0.7230010.3.1.4.8323329.307.1517875162.311533',
                    1]:
        # plt.imshow(rle2mask(x, 1024, 1024).T)
        # plt.show()
        Y_train = Y_train + np.expand_dims(rle2mask(x, 1024, 1024).T, axis=2)
    print(np.shape(Y_train))
    Y_train = np.squeeze(Y_train, 2)
    Y_train = np.where(Y_train > 0, 255, 0)
    plt.imshow(Y_train)
    plt.show()
Esempio n. 4
0
accu_bug_best = pd.read_csv(
    "./submissions/submission_private_accum_bug_tta_best.csv", dtype=str)

best_new_dfs = [accu_bug_best, best_align, best_align_div]

dfs = [our_best] + best_new_dfs
out_values = []
for img_id in tqdm(our_best.ImageId.unique()):
    or_between = None
    skip = False
    for i, df in enumerate(dfs):
        val = df[df.ImageId == img_id]["EncodedPixels"].values[0]
        if val.strip() == "-1":
            skip = True
            break
        mask = (rle2mask(val, 1024, 1024) > 0).astype(np.uint8)
        if or_between is None:
            or_between = np.zeros_like(mask, dtype=np.bool)
        or_between |= mask > 0.5
    if skip:
        out_values.append([img_id, "-1"])
    else:
        out_values.append([img_id, better_mask2rle(or_between * 1 * 255)])

out_best_values = out_values.copy()

out_values_df = pd.DataFrame(out_best_values,
                             columns=['ImageId', 'EncodedPixels'])
print((out_values_df.EncodedPixels == "-1").sum())
out_values_df.to_csv("private_merge_best.csv", index=None)
def get_mask(encode, height, width):
    mask = rle2mask(encode[0], height, width)
    for e in encode[1:]:
        mask += rle2mask(e, height, width)
    print(mask)
    return mask.T
Esempio n. 6
0
def dcm2jpg(dcm_path,
            save_jpg_path,
            csv_path=None,
            save_mask_path=None,
            show_info_pic=False):
    count_no_mask = 0

    if not os.path.exists(save_jpg_path):
        os.makedirs(save_jpg_path)

    # if has .csv
    if csv_path:
        # header=None : Instead of using the first row as a column index, the index is automatically generated
        # index_col=0 : Use the first column as an index column
        df = pd.read_csv(csv_path, header=None, index_col=0)
        if not os.path.exists(save_mask_path):
            os.makedirs(save_mask_path)

    for file_path in glob.glob(dcm_path):
        # convert dcm to jpg
        dataset = pydicom.dcmread(file_path)
        if show_info_pic:
            show_dcm_info(dataset, file_path)
            plot_pixel_array(dataset)
        print(file_path)

        if not csv_path:
            misc.imsave(
                os.path.join(save_jpg_path,
                             file_path.split('/')[-1][:-4] + '.jpg'),
                dataset.pixel_array)

        # if has .csv, convert csv to mask matrix
        # notice, .loc[row_index, col_index], and if the mask matrix must be transposed
        if csv_path:
            try:
                # there is no mask
                if '-1' in df.loc[file_path.split('/')[-1][:-4],
                                  1] or ' -1' in df.loc[
                                      file_path.split('/')[-1][:-4], 1]:
                    print('no mask')
                    mask = np.zeros((1024, 1024))
                else:
                    # if has one mask
                    if type(df.loc[file_path.split('/')[-1][:-4], 1]) == str:
                        print('one mask')
                        mask = rle2mask(
                            df.loc[file_path.split('/')[-1][:-4], 1], 1024,
                            1024).T
                        mask = np.where(mask > 0, 255, 0)
                    # more than one mask
                    else:
                        print('more than one mask')
                        mask = np.zeros((1024, 1024))
                        for x in df.loc[file_path.split('/')[-1][:-4], 1]:
                            mask = mask + rle2mask(x, 1024, 1024).T
                        mask = np.where(mask > 0, 255, 0)
                print('save')
                misc.imsave(
                    os.path.join(save_jpg_path,
                                 file_path.split('/')[-1][:-4] + '.jpg'),
                    dataset.pixel_array)
                misc.imsave(
                    os.path.join(save_mask_path,
                                 file_path.split('/')[-1][:-4] + '.png'), mask)
            except KeyError:
                print("Key" + file_path.split('/')[-1][:-4] + ",without mask")
                count_no_mask += 1
    print('count_no_mask:', count_no_mask)