Esempio n. 1
0
def sections(txt):
	txt = remove_tag(txt) # txt da pulire dei tag dell'html
	(time,res) = model.predict(txt)
	(_, res) = metrics.compute(txt, res)
	msg = {'data': res,'query':txt,'time': time}
	response = app.response_class(
			   	response=json.dumps(msg, indent=4),
			   	status=200,
			   	mimetype='application/json'
	)
	return response
Esempio n. 2
0
def test(txt, type="S"):
    model = Doc2Vec_model(type=type)
    model.load()
    import json
    (time, res) = model.predict(txt)
    (qnorm, res) = metrics.compute(txt, res)
    print(
        json.dumps(
            {
                'query': txt,
                'query_normalized': qnorm,
                'res': res,
                'time': time
            },
            indent=4,
            sort_keys=True))
Esempio n. 3
0
import pandas as pd

from utils import data
from utils import metrics
from sklearn.naive_bayes import GaussianNB

# Dataset 1 (Latin letters)
# Training
trainX, trainY = data.load_data('train_1.csv')
clf = GaussianNB()
clf.fit(trainX, trainY)
# Testing
testX, testY = data.load_data('test_with_label_1.csv')
predictions = pd.DataFrame(clf.predict(testX))
data.generate_csv(predictions, 'GNB-DS1.csv')
metrics.compute(predictions, testY, 'GNB-DS1.csv')
data.generate_cm(predictions, testY, 'GNB-DS1.png')

# Dataset 2 (Greek letters)
# Training
trainX, trainY = data.load_data('train_2.csv')
clf = GaussianNB()
clf.fit(trainX, trainY)
# Testing
testX, testY = data.load_data('test_with_label_2.csv')
predictions = pd.DataFrame(clf.predict(testX))
data.generate_csv(predictions, 'GNB-DS2.csv')
metrics.compute(predictions, testY, 'GNB-DS2.csv')
data.generate_cm(predictions, testY, 'GNB-DS2.png')
Esempio n. 4
0
import pandas as pd

from utils import data
from utils import metrics
from sklearn.neural_network import MLPClassifier

# Dataset 1 (Latin letters)
# Training
trainX, trainY = data.load_data('train_1.csv')
clf = MLPClassifier(activation='logistic', solver='sgd')
clf.fit(trainX, trainY)
# Testing
testX, testY = data.load_data('test_with_label_1.csv')
predictions = pd.DataFrame(clf.predict(testX))
data.generate_csv(predictions, 'Base-MLP-DS1.csv')
metrics.compute(predictions, testY, 'Base-MLP-DS1.csv')
data.generate_cm(predictions, testY, 'Base-MLP-DS1.png')

# Dataset 2 (Greek letters)
# Training
trainX, trainY = data.load_data('train_2.csv')
clf = MLPClassifier(activation='logistic', solver='sgd')
clf.fit(trainX, trainY)
# Testing
testX, testY = data.load_data('test_with_label_2.csv')
predictions = pd.DataFrame(clf.predict(testX))
data.generate_csv(predictions, 'Base-MLP-DS2.csv')
metrics.compute(predictions, testY, 'Base-MLP-DS2.csv')
data.generate_cm(predictions, testY, 'Base-MLP-DS2.png')
Esempio n. 5
0
}

# Dataset 1 (Latin letters)
# Training
trainX, trainY = data.load_data('train_1.csv')
clf = GridSearchCV(DecisionTreeClassifier(), param_grid, verbose=1)
clf.fit(trainX, trainY)
# Validation
validX, validY = data.load_data('val_1.csv')
print(f'Score: {round(clf.score(validX, validY), 3)}')
print(f'Parameters chosen: {clf.best_params_}')
# Testing
testX, testY = data.load_data('test_with_label_1.csv')
predictions = pd.DataFrame(clf.predict(testX))
data.generate_csv(predictions, 'Best-DT-DS1.csv')
metrics.compute(predictions, testY, 'Best-DT-DS1.csv')
data.generate_cm(predictions, testY, 'Best-DT-DS1.png')

# Dataset 2 (Greek letters)
# Training
trainX, trainY = data.load_data('train_2.csv')
clf = GridSearchCV(DecisionTreeClassifier(), param_grid, verbose=1)
clf.fit(trainX, trainY)
# Validation
validX, validY = data.load_data('val_2.csv')
print(f'Score: {round(clf.score(validX, validY), 3)}')
print(f'Parameters chosen: {clf.best_params_}')
# Testing
testX, testY = data.load_data('test_with_label_2.csv')
predictions = pd.DataFrame(clf.predict(testX))
data.generate_csv(predictions, 'Best-DT-DS2.csv')