Esempio n. 1
0
def valid_epoch_w_outlier(model, in_loader, out_loader, loss_func, detector_func, cur_epoch):
    global global_cfg  
    model.eval()
    avg_loss = 0
    correct = 0
    total = 0
    max_iter = 0
    avg_auroc = 0
    avg_aupr = 0
    avg_fpr = 0
    in_data_size = len(in_loader.dataset)
    for cur_iter, (in_set, out_set) in enumerate(zip(in_loader, out_loader)):        
        # Data to GPU
        data = torch.cat((in_set[0], out_set[0]), 0)
        targets = in_set[1]
        data, targets = data.cuda(), targets.cuda()
        
        # Foward propagation and Calculate loss and confidence
        logits = model(data)
        global_cfg['loss']['model'] = model
        global_cfg['loss']['data'] = data
        global_cfg['detector']['model'] = model
        global_cfg['detector']['data'] = data
        loss_dict = loss_func(logits, targets, global_cfg['loss'])
        loss = loss_dict['loss']
        confidences_dict = detector_func(logits, targets, global_cfg['detector'])
        confidences = confidences_dict['confidences']
        
        ## METRICS ##
        # Calculate classifier error about in-distribution sample
        num_topks_correct = metrics.topks_correct(logits[:len(targets)], targets, (1,))
        [top1_correct] = [x for x in num_topks_correct]
        
        # Calculate OOD metrics (auroc, aupr, fpr)
        (auroc, aupr, fpr) = metrics.get_ood_measures(confidences, targets)
        
        # Add additional metrics!!!
        
        ## Update stats ##
        loss, top1_correct = loss.item(), top1_correct.item()
        avg_loss += loss
        correct += top1_correct
        total += targets.size(0)
        max_iter += 1
        avg_auroc += auroc
        avg_aupr += aupr
        avg_fpr += fpr
        
    
    summary = {
        'avg_loss': avg_loss / total,
        'classifier_acc': correct / total,
        'AUROC': avg_auroc / max_iter,
        'AUPR' : avg_aupr / max_iter,
        'FPR95': avg_fpr / max_iter,
        'epoch': cur_epoch,
    }
    
    return summary
Esempio n. 2
0
def valid_epoch_w_outlier(model, in_loader, out_loader, loss_func,
                          detector_func, cur_epoch, logfile2):
    model.eval()
    global global_cfg
    avg_loss = 0
    correct = 0
    total = 0
    max_iter = 0
    avg_auroc = 0
    avg_aupr = 0
    avg_fpr = 0
    inlier_conf = 0
    outlier_conf = 0
    avg_acc = 0
    in_data_size = len(in_loader.dataset)
    inliers_conf = []
    outliers_conf = []
    for cur_iter, (in_set, out_set) in enumerate(zip(in_loader, out_loader)):
        # Data to GPU
        data = torch.cat((in_set[0], out_set[0]), 0)
        targets = in_set[1]
        data, targets = data.cuda(), targets.cuda()
        #print("in {} out {}".format(in_set[0].size(), out_set[0].size()))
        # Foward propagation and Calculate loss and confidence
        logits = model(data)

        global_cfg['loss']['model'] = model
        global_cfg['loss']['data'] = data
        global_cfg['detector']['model'] = model
        global_cfg['detector']['data'] = data
        loss_dict = loss_func(logits, targets, global_cfg['loss'])
        loss = loss_dict['loss']
        confidences_dict = detector_func(logits, targets,
                                         global_cfg['detector'])
        confidences = confidences_dict['confidences']

        ## METRICS ##
        # Calculate classifier error about in-distribution sample
        num_topks_correct = metrics.topks_correct(logits[:len(targets)],
                                                  targets, (1, ))
        [top1_correct] = [x for x in num_topks_correct]

        # Calculate OOD metrics (auroc, aupr, fpr)
        (auroc, aupr, fpr) = metrics.get_ood_measures(confidences, targets)

        # Add additional metrics!!!
        metrics.show_wrong_samples_targets(logits[:len(targets)], targets,
                                           logfile2)
        acc = metrics.classify_acc_w_ood(logits, targets, confidences)

        ## Update stats ##
        loss, top1_correct = loss.item(), top1_correct.item()
        avg_loss += loss
        correct += top1_correct
        total += targets.size(0)
        max_iter += 1
        avg_auroc += auroc
        avg_aupr += aupr
        avg_fpr += fpr
        inlier_conf += confidences_dict['inlier_mean']
        outlier_conf += confidences_dict['outlier_mean']
        inliers_conf.append(confidences[:len(targets)].squeeze(1).data.cpu())
        outliers_conf.append(confidences[len(targets):].squeeze(1).data.cpu())
        avg_acc += acc

    summary = {
        'avg_loss': avg_loss / total,
        'classifier_acc': correct / total,
        'AUROC': avg_auroc / max_iter,
        'AUPR': avg_aupr / max_iter,
        'FPR95': avg_fpr / max_iter,
        'inlier_confidence': inlier_conf / max_iter,
        'outlier_confidence': outlier_conf / max_iter,
        'inliers': torch.cat(inliers_conf).numpy(),
        'outliers': torch.cat(outliers_conf).numpy(),
        'acc': avg_acc / max_iter,
        'epoch': cur_epoch,
    }

    return summary
Esempio n. 3
0
def valid_epoch_w_outlier(model,
                          in_loader,
                          out_loader,
                          loss_func,
                          detector_func,
                          cur_epoch,
                          logfile2,
                          attack_in=None,
                          attack_out=None):
    model.eval()
    global global_cfg
    avg_loss = 0
    correct = 0
    total = 0
    max_iter = 0
    avg_auroc = 0
    avg_aupr = 0
    avg_fpr = 0
    inlier_conf = 0
    outlier_conf = 0
    avg_acc = 0
    in_data_size = len(in_loader.dataset)
    inliers_conf = []
    outliers_conf = []
    f_logits_list = []
    targets_list = []
    for cur_iter, (in_set, out_set) in enumerate(zip(in_loader, out_loader)):
        in_data = in_set[0]
        out_data = out_set[0]
        targets = in_set[1].cuda()

        if attack_in is not None:
            adv_inputs = attack_in.perturb(in_data.cuda(), targets)
            in_data = adv_inputs.cuda()

        if attack_out is not None:
            adv_inputs = attack_out.perturb(out_data.cuda())
            out_data = adv_inputs.cuda()

        # Data to GPU
        data = torch.cat((in_data, out_data), 0)
        data = data.cuda()
        #print("in {} out {}".format(in_set[0].size(), out_set[0].size()))
        # Foward propagation and Calculate loss and confidence
        (g_logits, h_logits, f_logits) = model(data)
        f_logits_list.append(f_logits.data.cpu())
        ood_num = f_logits.size(0) - len(targets)
        ood_targets = torch.zeros(ood_num)
        ood_targets += g_logits.size(1)
        save_targets = torch.cat(
            (targets.data.cpu(), ood_targets.type(torch.LongTensor)), 0)
        targets_list.append(save_targets)
        loss = F.cross_entropy(g_logits[:len(targets)], targets)

        global_cfg['detector']['model'] = model
        global_cfg['detector']['data'] = data
        confidences_dict = detector_func(f_logits, targets,
                                         global_cfg['detector'])
        confidences = confidences_dict['confidences']

        ## METRICS ##
        # Calculate classifier error about in-distribution sample
        num_topks_correct = metrics.topks_correct(g_logits[:len(targets)],
                                                  targets, (1, ))
        [top1_correct] = [x for x in num_topks_correct]

        # Calculate OOD metrics (auroc, aupr, fpr)
        (auroc, aupr, fpr) = metrics.get_ood_measures(confidences, targets)

        # Add additional metrics!!!
        metrics.show_wrong_samples_targets(g_logits[:len(targets)], targets,
                                           logfile2)
        acc = metrics.classify_acc_w_ood(g_logits, targets, confidences)

        ## Update stats ##
        loss, top1_correct = loss.item(), top1_correct.item()
        avg_loss += loss
        correct += top1_correct
        total += targets.size(0)
        max_iter += 1
        avg_auroc += auroc
        avg_aupr += aupr
        avg_fpr += fpr
        inlier_conf += confidences_dict['inlier_mean']
        outlier_conf += confidences_dict['outlier_mean']
        inliers_conf.append(confidences[:len(targets)].squeeze(1).data.cpu())
        outliers_conf.append(confidences[len(targets):].squeeze(1).data.cpu())
        avg_acc += acc

    summary = {
        'avg_loss': avg_loss / total,
        'classifier_acc': correct / total,
        'AUROC': avg_auroc / max_iter,
        'AUPR': avg_aupr / max_iter,
        'FPR95': avg_fpr / max_iter,
        'inlier_confidence': inlier_conf / max_iter,
        'outlier_confidence': outlier_conf / max_iter,
        'inliers': torch.cat(inliers_conf).numpy(),
        'outliers': torch.cat(outliers_conf).numpy(),
        'acc': avg_acc / max_iter,
        'epoch': cur_epoch,
        'logits': torch.cat(f_logits_list, dim=0),
        'targets': torch.cat(targets_list, dim=0),  # (Bs,)
    }

    return summary