Esempio n. 1
0
    def _evaluate_batches(self, model, dataset):

        # import pdb; pdb.set_trace()

        model.eval()

        resloss_asr = 0
        resloss_ae = 0
        resloss_kl = 0
        resloss_l2 = 0
        resloss_norm = 0

        # accuracy
        match_asr = 0
        total_asr = 0
        match_ae = 0
        total_ae = 0

        # bleu
        hyp_corpus_asr = []
        ref_corpus_asr = []
        hyp_corpus_ae = []
        ref_corpus_ae = []

        evaliter = iter(dataset.iter_loader)
        out_count = 0

        with torch.no_grad():
            for idx in range(len(evaliter)):
                batch_items = evaliter.next()

                # import pdb; pdb.set_trace()

                # load data
                batch_src_ids = batch_items['srcid'][0]
                batch_src_lengths = batch_items['srclen']
                batch_acous_feats = batch_items['acous_feat'][0]
                batch_acous_lengths = batch_items['acouslen']

                # separate into minibatch
                batch_size = batch_src_ids.size(0)
                batch_seq_len = int(max(batch_src_lengths))

                n_minibatch = int(batch_size / self.minibatch_size)
                n_minibatch += int(batch_size % self.minibatch_size > 0)

                for bidx in range(n_minibatch):

                    loss_asr = NLLLoss()
                    loss_asr.reset()
                    loss_ae = NLLLoss()
                    loss_ae.reset()
                    loss_kl = KLDivLoss()
                    loss_kl.reset()
                    loss_l2 = MSELoss()
                    loss_l2.reset()

                    i_start = bidx * self.minibatch_size
                    i_end = min(i_start + self.minibatch_size, batch_size)
                    src_ids = batch_src_ids[i_start:i_end]
                    src_lengths = batch_src_lengths[i_start:i_end]
                    acous_feats = batch_acous_feats[i_start:i_end]
                    acous_lengths = batch_acous_lengths[i_start:i_end]

                    src_len = max(src_lengths)
                    acous_len = max(acous_lengths)
                    acous_len = acous_len + 8 - acous_len % 8
                    src_ids = src_ids.to(device=self.device)
                    acous_feats = acous_feats[:, :acous_len].to(
                        device=self.device)

                    # debug oom
                    # acous_feats, acous_lengths, src_ids, tgt_ids = self._debug_oom(acous_len, acous_feats)

                    non_padding_mask_src = src_ids.data.ne(PAD)

                    # [run-TF] to save time
                    # out_dict =  model.forward_train(src_ids, acous_feats=acous_feats,
                    #	acous_lens=acous_lengths, mode='ASR', use_gpu=self.use_gpu)

                    # [run-FR] to get true stats
                    out_dict = model.forward_eval(src=src_ids,
                                                  acous_feats=acous_feats,
                                                  acous_lens=acous_lengths,
                                                  mode='AE_ASR',
                                                  use_gpu=self.use_gpu)

                    preds_asr = out_dict['preds_asr']
                    logps_asr = out_dict['logps_asr']
                    emb_asr = out_dict['emb_asr']
                    preds_ae = out_dict['preds_ae']
                    logps_ae = out_dict['logps_ae']
                    emb_ae = out_dict['emb_ae']
                    refs_ae = out_dict['refs_ae']
                    logps_hyp_asr = logps_asr
                    preds_hyp_asr = preds_asr
                    emb_hyp_asr = emb_asr
                    logps_hyp_ae = logps_ae
                    preds_hyp_ae = preds_ae
                    emb_hyp_ae = emb_ae

                    # evaluation
                    if not self.eval_with_mask:
                        loss_asr.eval_batch(
                            logps_hyp_asr.reshape(-1, logps_hyp_asr.size(-1)),
                            src_ids[:, 1:].reshape(-1))
                        loss_asr.norm_term = 1.0 * src_ids.size(
                            0) * src_ids[:, 1:].size(1)
                        loss_ae.eval_batch(
                            logps_hyp_ae.reshape(-1, logps_hyp_ae.size(-1)),
                            refs_ae.reshape(-1))
                        loss_ae.norm_term = 1.0 * src_ids.size(
                            0) * src_ids[:, 1:].size(1)
                        loss_kl.eval_batch(
                            logps_hyp_ae.reshape(-1, logps_hyp_ae.size(-1)),
                            logps_hyp_asr.reshape(-1, logps_hyp_asr.size(-1)))
                        loss_kl.norm_term = 1.0 * src_ids.size(
                            0) * src_ids[:, 1:].size(1)
                        loss_l2.eval_batch(
                            emb_hyp_asr.reshape(-1, emb_hyp_asr.size(-1)),
                            emb_hyp_ae.reshape(-1, emb_hyp_ae.size(-1)))
                        loss_l2.norm_term = 1.0 * src_ids.size(
                            0) * src_ids[:, 1:].size(1)

                    else:
                        loss_asr.eval_batch_with_mask(
                            logps_hyp_asr.reshape(-1, logps_hyp_asr.size(-1)),
                            src_ids[:, 1:].reshape(-1),
                            non_padding_mask_src[:, 1:].reshape(-1))
                        loss_asr.norm_term = 1.0 * torch.sum(
                            non_padding_mask_src[:, 1:])
                        loss_ae.eval_batch_with_mask(
                            logps_hyp_ae.reshape(-1, logps_hyp_ae.size(-1)),
                            refs_ae.reshape(-1),
                            non_padding_mask_src[:, 1:].reshape(-1))
                        loss_ae.norm_term = 1.0 * torch.sum(
                            non_padding_mask_src[:, 1:])
                        loss_kl.eval_batch_with_mask(
                            logps_hyp_ae.reshape(-1, logps_hyp_ae.size(-1)),
                            logps_hyp_asr.reshape(-1, logps_hyp_asr.size(-1)),
                            non_padding_mask_src[:, 1:].reshape(-1))
                        loss_kl.norm_term = 1.0 * torch.sum(
                            non_padding_mask_src[:, 1:])
                        loss_l2.eval_batch_with_mask(
                            emb_hyp_asr.reshape(-1, emb_hyp_asr.size(-1)),
                            emb_hyp_ae.reshape(-1, emb_hyp_ae.size(-1)),
                            non_padding_mask_src[:, 1:].reshape(-1))
                        loss_l2.norm_term = 1.0 * torch.sum(
                            non_padding_mask_src[:, 1:])

                    if self.normalise_loss:
                        loss_asr.normalise()
                        loss_ae.normalise()
                        loss_kl.normalise()
                        loss_l2.normalise()

                    resloss_asr += loss_asr.get_loss()
                    resloss_ae += loss_ae.get_loss()
                    resloss_kl += loss_kl.get_loss()
                    resloss_l2 += loss_l2.get_loss()
                    resloss_norm += 1

                    # ----- debug -----
                    # print('{}/{}, {}/{}'.format(bidx, n_minibatch, idx, len(evaliter)))
                    # if loss_kl.get_loss() > 10 or (bidx==4 and idx==1):
                    # 	import pdb; pdb.set_trace()
                    # -----------------

                    # accuracy
                    seqres_asr = preds_hyp_asr
                    correct_asr = seqres_asr.reshape(-1).eq(src_ids[:,1:].reshape(-1))\
                     .masked_select(non_padding_mask_src[:,1:].reshape(-1)).sum().item()
                    match_asr += correct_asr
                    total_asr += non_padding_mask_src[:, 1:].sum().item()

                    seqres_ae = preds_hyp_ae
                    correct_ae = seqres_ae.reshape(-1).eq(refs_ae.reshape(-1))\
                     .masked_select(non_padding_mask_src[:,1:].reshape(-1)).sum().item()
                    match_ae += correct_ae
                    total_ae += non_padding_mask_src[:, 1:].sum().item()

                    # append to refs_ae
                    dummy = torch.zeros(refs_ae.size(0),
                                        1).to(device=self.device).long()
                    refs_ae_add = torch.cat((dummy, refs_ae), dim=1)

                    # print
                    out_count_dummy = self._print(out_count,
                                                  src_ids,
                                                  dataset.src_id2word,
                                                  seqres_asr,
                                                  tail='-asr')
                    out_count = self._print(out_count,
                                            refs_ae_add,
                                            dataset.src_id2word,
                                            seqres_ae,
                                            tail='-ae ')

                    # accumulate corpus
                    hyp_corpus_asr, ref_corpus_asr = add2corpus(
                        seqres_asr,
                        src_ids,
                        dataset.src_id2word,
                        hyp_corpus_asr,
                        ref_corpus_asr,
                        type='word')
                    hyp_corpus_ae, ref_corpus_ae = add2corpus(
                        seqres_ae,
                        refs_ae_add,
                        dataset.src_id2word,
                        hyp_corpus_ae,
                        ref_corpus_ae,
                        type='word')

        # import pdb; pdb.set_trace()
        bleu_asr = torchtext.data.metrics.bleu_score(hyp_corpus_asr,
                                                     ref_corpus_asr)
        bleu_ae = torchtext.data.metrics.bleu_score(hyp_corpus_ae,
                                                    ref_corpus_ae)

        # torch.cuda.empty_cache()
        if total_asr == 0:
            accuracy_asr = float('nan')
        else:
            accuracy_asr = match_asr / total_asr
        if total_ae == 0:
            accuracy_ae = float('nan')
        else:
            accuracy_ae = match_ae / total_ae

        resloss_asr *= self.loss_coeff['nll_asr']
        resloss_asr /= (1.0 * resloss_norm)
        resloss_ae *= self.loss_coeff['nll_ae']
        resloss_ae /= (1.0 * resloss_norm)
        resloss_kl *= self.loss_coeff['kl_en']
        resloss_kl /= (1.0 * resloss_norm)
        resloss_l2 *= self.loss_coeff['l2']
        resloss_l2 /= (1.0 * resloss_norm)

        losses = {}
        losses['l2_loss'] = resloss_l2
        losses['kl_loss'] = resloss_kl
        losses['nll_loss_asr'] = resloss_asr
        losses['nll_loss_ae'] = resloss_ae
        metrics = {}
        metrics['accuracy_asr'] = accuracy_asr
        metrics['bleu_asr'] = bleu_asr
        metrics['accuracy_ae'] = accuracy_ae
        metrics['bleu_ae'] = bleu_ae

        return losses, metrics
Esempio n. 2
0
    def _evaluate_batches(self, model, dataset):

        # import pdb; pdb.set_trace()

        model.eval()

        resloss = 0
        resloss_norm = 0

        # accuracy
        match = 0
        total = 0

        # bleu
        hyp_corpus = []
        ref_corpus = []

        evaliter = iter(dataset.iter_loader)
        out_count = 0

        with torch.no_grad():
            for idx in range(len(evaliter)):
                batch_items = evaliter.next()

                # load data
                batch_src_ids = batch_items['srcid'][0]
                batch_src_lengths = batch_items['srclen']
                batch_tgt_ids = batch_items['tgtid'][0]
                batch_tgt_lengths = batch_items['tgtlen']

                # separate into minibatch
                batch_size = batch_src_ids.size(0)
                batch_seq_len = int(max(batch_src_lengths))

                n_minibatch = int(batch_size / self.minibatch_size)
                n_minibatch += int(batch_size % self.minibatch_size > 0)

                for bidx in range(n_minibatch):

                    loss = NLLLoss()
                    loss.reset()

                    i_start = bidx * self.minibatch_size
                    i_end = min(i_start + self.minibatch_size, batch_size)
                    src_ids = batch_src_ids[i_start:i_end]
                    src_lengths = batch_src_lengths[i_start:i_end]
                    tgt_ids = batch_tgt_ids[i_start:i_end]
                    tgt_lengths = batch_tgt_lengths[i_start:i_end]

                    src_len = max(src_lengths)
                    tgt_len = max(tgt_lengths)
                    src_ids = src_ids[:, :src_len].to(device=self.device)
                    tgt_ids = tgt_ids.to(device=self.device)

                    non_padding_mask_tgt = tgt_ids.data.ne(PAD)
                    non_padding_mask_src = src_ids.data.ne(PAD)

                    # import pdb; pdb.set_trace()
                    if self.eval_mode == 'tf':
                        # [run-TF] to save time
                        preds, logps, dec_outputs = model.forward_train(
                            src_ids, tgt_ids, use_gpu=self.use_gpu)
                        logps_hyp = logps[:, :-1, :]
                        preds_hyp = preds[:, :-1]
                    elif self.eval_mode == 'fr':
                        # [run-FR] to get true stats
                        preds, logps, dec_outputs = model.forward_eval(
                            src_ids, use_gpu=self.use_gpu)
                        logps_hyp = logps[:, 1:, :]
                        preds_hyp = preds[:, 1:]

                    # evaluation
                    if not self.eval_with_mask:
                        loss.eval_batch(
                            logps_hyp.reshape(-1, logps_hyp.size(-1)),
                            tgt_ids[:, 1:].reshape(-1))
                        loss.norm_term = 1.0 * tgt_ids.size(
                            0) * tgt_ids[:, 1:].size(1)
                    else:
                        loss.eval_batch_with_mask(
                            logps_hyp.reshape(-1, logps_hyp.size(-1)),
                            tgt_ids[:, 1:].reshape(-1),
                            non_padding_mask_tgt[:, 1:].reshape(-1))
                        loss.norm_term = 1.0 * torch.sum(
                            non_padding_mask_tgt[:, 1:])
                    if self.normalise_loss: loss.normalise()
                    resloss += loss.get_loss()
                    resloss_norm += 1

                    # accuracy
                    seqres = preds_hyp
                    correct = seqres.reshape(-1).eq(tgt_ids[:,1:].reshape(-1))\
                     .masked_select(non_padding_mask_tgt[:,1:].reshape(-1)).sum().item()
                    match += correct
                    total += non_padding_mask_tgt[:, 1:].sum().item()

                    # print
                    out_count = self._print_hyp(out_count, src_ids, tgt_ids,
                                                dataset.src_id2word,
                                                dataset.tgt_id2word, seqres)

                    # accumulate corpus
                    hyp_corpus, ref_corpus = add2corpus(seqres,
                                                        tgt_ids,
                                                        dataset.tgt_id2word,
                                                        hyp_corpus,
                                                        ref_corpus,
                                                        type=dataset.use_type)

        # import pdb; pdb.set_trace()
        bleu = torchtext.data.metrics.bleu_score(hyp_corpus, ref_corpus)

        if total == 0:
            accuracy = float('nan')
        else:
            accuracy = match / total

        resloss /= (1.0 * resloss_norm)

        losses = {}
        losses['nll_loss'] = resloss
        metrics = {}
        metrics['accuracy'] = accuracy
        metrics['bleu'] = bleu

        return losses, metrics
Esempio n. 3
0
    def _evaluate_batches(self, model, dataset):

        # import pdb; pdb.set_trace()

        model.eval()

        resloss_en = 0
        resloss_norm = 0

        # accuracy
        match_en = 0
        total_en = 0

        # bleu
        hyp_corpus_en = []
        ref_corpus_en = []

        evaliter = iter(dataset.iter_loader)
        out_count = 0

        with torch.no_grad():
            for idx in range(len(evaliter)):
                batch_items = evaliter.next()

                # import pdb; pdb.set_trace()

                # load data
                batch_src_ids = batch_items['srcid'][0]
                batch_src_lengths = batch_items['srclen']
                batch_acous_feats = batch_items['acous_feat'][0]
                batch_acous_lengths = batch_items['acouslen']

                # separate into minibatch
                batch_size = batch_src_ids.size(0)
                batch_seq_len = int(max(batch_src_lengths))

                n_minibatch = int(batch_size / self.minibatch_size)
                n_minibatch += int(batch_size % self.minibatch_size > 0)

                for bidx in range(n_minibatch):

                    loss_en = NLLLoss()
                    loss_en.reset()

                    i_start = bidx * self.minibatch_size
                    i_end = min(i_start + self.minibatch_size, batch_size)
                    src_ids = batch_src_ids[i_start:i_end]
                    src_lengths = batch_src_lengths[i_start:i_end]
                    acous_feats = batch_acous_feats[i_start:i_end]
                    acous_lengths = batch_acous_lengths[i_start:i_end]

                    src_len = max(src_lengths)
                    acous_len = max(acous_lengths)
                    acous_len = acous_len + 8 - acous_len % 8
                    src_ids = src_ids.to(device=self.device)
                    acous_feats = acous_feats[:, :acous_len].to(
                        device=self.device)

                    # debug oom
                    # acous_feats, acous_lengths, src_ids, tgt_ids = self._debug_oom(acous_len, acous_feats)

                    non_padding_mask_src = src_ids.data.ne(PAD)

                    # [run-TF] to save time
                    # out_dict =  model.forward_train(src_ids, acous_feats=acous_feats,
                    #	acous_lens=acous_lengths, mode='ASR', use_gpu=self.use_gpu)

                    # [run-FR] to get true stats
                    out_dict = model.forward_eval(acous_feats=acous_feats,
                                                  acous_lens=acous_lengths,
                                                  mode='ASR',
                                                  use_gpu=self.use_gpu)

                    preds_en = out_dict['preds_asr']
                    logps_en = out_dict['logps_asr']
                    logps_hyp_en = logps_en
                    preds_hyp_en = preds_en

                    # evaluation
                    if not self.eval_with_mask:
                        loss_en.eval_batch(
                            logps_hyp_en.reshape(-1, logps_hyp_en.size(-1)),
                            src_ids[:, 1:].reshape(-1))
                        loss_en.norm_term = 1.0 * src_ids.size(
                            0) * src_ids[:, 1:].size(1)
                    else:
                        loss_en.eval_batch_with_mask(
                            logps_hyp_en.reshape(-1, logps_hyp_en.size(-1)),
                            src_ids[:, 1:].reshape(-1),
                            non_padding_mask_src[:, 1:].reshape(-1))
                        loss_en.norm_term = 1.0 * torch.sum(
                            non_padding_mask_src[:, 1:])

                    if self.normalise_loss:
                        loss_en.normalise()

                    resloss_en += loss_en.get_loss()
                    resloss_norm += 1

                    # accuracy
                    seqres_en = preds_hyp_en
                    correct_en = seqres_en.reshape(-1).eq(src_ids[:,1:].reshape(-1))\
                     .masked_select(non_padding_mask_src[:,1:].reshape(-1)).sum().item()
                    match_en += correct_en
                    total_en += non_padding_mask_src[:, 1:].sum().item()

                    # print
                    out_count = self._print(out_count,
                                            src_ids,
                                            dataset.src_id2word,
                                            seqres_en,
                                            tail='-asr')

                    # accumulate corpus
                    hyp_corpus_en, ref_corpus_en = add2corpus(
                        seqres_en,
                        src_ids,
                        dataset.src_id2word,
                        hyp_corpus_en,
                        ref_corpus_en,
                        type='word')

        # import pdb; pdb.set_trace()
        bleu_en = torchtext.data.metrics.bleu_score(hyp_corpus_en,
                                                    ref_corpus_en)

        # torch.cuda.empty_cache()
        if total_en == 0:
            accuracy_en = float('nan')
        else:
            accuracy_en = match_en / total_en

        resloss_en /= (1.0 * resloss_norm)

        losses = {}
        losses['nll_loss_de'] = 0
        losses['nll_loss_en'] = resloss_en
        metrics = {}
        metrics['accuracy_de'] = 0
        metrics['bleu_de'] = 0
        metrics['accuracy_en'] = accuracy_en
        metrics['bleu_en'] = bleu_en

        return losses, metrics